Probabilistic Modelling and Reasoning: A Machine Learning Approach

Introduction to Probabilistic Modelling

Edwin V. Bonilla

Principal Research Scientist, CSIRO's Data61 Associate Professor (Hon.), Australian National University

December 14th, 2021

Machine Learning: A Probabilistic Perspective Kevin P. Murphy, 2012

Bayesian Reasoning and Machine Learning David Barber, 2012

Pattern Recognition and Machine Learning Christopher Bishop, 2006

Gaussian Processes for Machine Learning Carl E. Rasmussen and Christopher K. I. Williams, 2006 · Medical diagnosis in an intensive care unit

• Data fusion for geothermal energy exploration

Motivation (3)

• Quantification of Uncertainty with Expensive Computational Models: Climate modelling

Motivation (4)

• Quantification of Uncertainty with No Models: Classification and progression modelling of neurodegenerative diseases

Healthy?

Needs treatment?

Filippone et al., AoAS, 2012

A Unified Framework

A model might be expensive to simulate/inaccurate

• Emulate model/discrepancy using a surrogate

A Unified Framework

A model might be expensive to simulate/inaccurate

• Emulate model/discrepancy using a surrogate

A model might not even be available

• Make use of a flexible model, e.g., Neural Nets

A Unified Framework

A model might be expensive to simulate/inaccurate

• Emulate model/discrepancy using a surrogate

A model might not even be available

• Make use of a flexible model, e.g., Neural Nets

Quantification of Uncertainty

- Bayesian neural nets
- Gaussian Processes

Three Lectures: Outline

Introduction to probabilistic modelling

- Machine Learning and Probability Theory
- Bayesian Linear Regression

Gaussian Processes Gaussian Processe Gaussian Processe Gaussian Process

- Gaussian Processes for Regression
- Model Approximations

Advanced Topics

- Approximate Inference
- Applications, Challenges & Opportunities

This Lecture: Outline

Basic Machine Learning Concepts

Basic Machine Learning Concepts (1)

Types of machine learning

- Supervised
 - Classification
 - Regression

Basic Machine Learning Concepts (1)

Types of machine learning

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Dimensionality reduction
 - Clustering
 - Latent variable modelling
 - Density estimation

Basic Machine Learning Concepts (1)

Types of machine learning

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Dimensionality reduction
 - Clustering
 - Latent variable modelling
 - Density estimation
- Reinforcement learning
 - Delayed reward
 - Acting and planning

Basic Machine Learning Concepts (2)

- The need for probabilistic predictions
 - ► Risk assessment, decision theory
 - Active learning
 - Reinforcement learning

Basic Machine Learning Concepts (2)

- The need for probabilistic predictions
 - ► Risk assessment, decision theory
 - Active learning
 - Reinforcement learning
- \cdot The curse of dimensionality

Basic Machine Learning Concepts (2)

- The need for probabilistic predictions
 - Risk assessment, decision theory
 - Active learning
 - Reinforcement learning
- \cdot The curse of dimensionality
- Generalisation
 - Overfitting, model selection
 - Validation set, cross validation
 - No free lunch theorem

Probability Theory Refresher

Discrete Random Variables

- $X \in \mathcal{X}$: Random variable (r.v.) X can take on any value from \mathcal{X}
- p(X = x) or simply p(x): Probability that X = x
- Probability mass function (pmf):

$$0 \le p(x) \le 1, \sum_{x \in \mathcal{X}} p(x) = 1$$

Discrete Random Variables

- · $X \in \mathcal{X}$: Random variable (r.v.) X can take on any value from \mathcal{X}
- p(X = x) or simply p(x): Probability that X = x
- Probability mass function (pmf):

$$0 \le p(x) \le 1, \sum_{x \in \mathcal{X}} p(x) = 1$$

- $B \in \{r, b\}$: r.v. for the box taking on values red or blue
- F ∈ {a, o}: r.v. for the fruit taking on values apple or orange

Discrete Random Variables

- · $X \in \mathcal{X}$: Random variable (r.v.) X can take on any value from \mathcal{X}
- p(X = x) or simply p(x): Probability that X = x
- Probability mass function (pmf):

$$0 \le p(x) \le 1, \sum_{x \in \mathcal{X}} p(x) = 1$$

- $B \in \{r, b\}$: r.v. for the box taking on values red or blue
- F ∈ {a, o}: r.v. for the fruit taking on values apple or orange

We can specify a joint distribution p(B, F) = P(B)P(F|B)

Edwin V. Bonilla, CSIRO's Data61

• Joint
$$p(X = x, Y = x)$$

- Joint p(X = x, Y = x)
- Marginal (using the sum rule):

$$p(Y = y) = \sum_{x \in \mathcal{X}} p(X = x, Y = y)$$

- Joint p(X = x, Y = x)
- Marginal (using the sum rule):

$$p(Y = y) = \sum_{x \in \mathcal{X}} p(X = x, Y = y)$$

• Product rule:

p(X, Y) = p(Y)p(X | Y)= p(X)p(Y | X)

- Joint p(X = x, Y = x)
- Marginal (using the sum rule):

$$p(Y = y) = \sum_{x \in \mathcal{X}} p(X = x, Y = y)$$

• Product rule:

p(X, Y) = p(Y)p(X | Y)= p(X)p(Y | X)

• Conditional:

$$p(x = x | Y = y) = \frac{p(X = x, Y = Y)}{p(Y = y)}$$

How to Update our Beliefs Given New Data

Bayesian Inference

Bayesian inference provides us with a a mathematical framework explaining how to change our (prior) beliefs in the light of new evidence.

Bayesian Inference

Bayesian inference provides us with a a mathematical framework explaining how to change our (prior) beliefs in the light of new evidence.

Example: Suppose you have been tested positive for a disease; what is the probability that you actually have the disease?

- $X \in \{0, 1\}$: Whether you have the disease
- $Y \in \{0, 1\}$: Outcome of the test

Bayesian Inference

Bayesian inference provides us with a a mathematical framework explaining how to change our (prior) beliefs in the light of new evidence.

Example: Suppose you have been tested positive for a disease; what is the probability that you actually have the disease?

- $X \in \{0, 1\}$: Whether you have the disease
- $Y \in \{0, 1\}$: Outcome of the test

Computational challenges

Edwin V. Bonilla, CSIRO's Data61

In our fruit-box example, suppose that both boxes (red and blue) contain the same proportion of apples and oranges, say:

$$p(F = a | B = r) = p(F = a | B = b) = 0.2$$

$$p(F = o | B = r) = p(F = o | B = b) = 0.8$$

The probability of selecting an apple (or an orange) is independent of the box that is chosen.

In our fruit-box example, suppose that both boxes (red and blue) contain the same proportion of apples and oranges, say:

$$p(F = a | B = r) = p(F = a | B = b) = 0.2$$

$$p(F = o | B = r) = p(F = o | B = b) = 0.8$$

The probability of selecting an apple (or an orange) is independent of the box that is chosen.

Independent Variables

Two variables X and Y are statistically independent iff their joint distribution factorises into the product of their marginals:

 $X \perp\!\!\!\perp Y \leftrightarrow p(X,Y) = P(X)p(Y)$

This definition generalises to more than two variables.

Edwin V. Bonilla, CSIRO's Data61

Continuous Random Variables

Probability density function (pdf) p(x):

Cumulative distribution function (cdf) *F*(*x*):

 $F(x) = p(X \le x)$ $= \int_{-\infty}^{x} p(z) dz$

Edwin V. Bonilla, CSIRO's Data61

The Gaussian Distribution: 1-dimensional Case

 $p(x) = \mathcal{N}(x; \mu, \sigma^2)$

 $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$

The Gaussian Distribution: 1-dimensional Case

 $p(x) = \mathcal{N}(x; \mu, \sigma^2)$

 $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$

 $F(x) = \int_{-\infty}^{x} \mathcal{N}(z; \mu, \sigma^2) dz$

The Gaussian Distribution: 1-dimensional Case

 $p(x) = \mathcal{N}(x; \mu, \sigma^2)$

 $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$

 $F(x) = \int_{-\infty}^{x} \mathcal{N}(z; \mu, \sigma^2) dz$

For a standard Normal, $\mu = 0, \sigma^2 = 1$

The Gaussian Distribution: 2-dimensional Case

 $p(x_1, x_2) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ Joint

The Gaussian Distribution: 2-dimensional Case

The Gaussian Distribution: 2-dimensional Case

The Gaussian Distribution: 2-dimensional Case

The marginal and the conditional distributions are also Gaussians

In general:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

In general:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- Σ^{-1} : precision matrix
 - ► $\Sigma_{ij}^{-1} = 0$: x_i, x_j are conditionally independent given all the others

In general:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- Σ^{-1} : precision matrix
 - ► $\Sigma_{ij}^{-1} = 0$: x_i, x_j are conditionally independent given all the others
- Σ : covariance matrix

In general:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- ► $\Sigma_{ij}^{-1} = 0$: x_i, x_j are conditionally independent given all the others
- Σ: covariance matrix
 - $\Sigma_{ij} = 0$: x_i, x_j are marginally independent

In general:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- ► $\Sigma_{ij}^{-1} = 0$: x_i, x_j are conditionally independent given all the others
- Σ: covariance matrix
 - $\Sigma_{ij} = 0$: x_i, x_j are marginally independent
- Marginalizing out a variable

In general:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- ► $\Sigma_{ij}^{-1} = 0$: x_i, x_j are conditionally independent given all the others
- Σ: covariance matrix
 - $\Sigma_{ij} = 0$: x_i, x_j are marginally independent
- Marginalizing out a variable
 - Leaves Σ unchanged but changes Σ^{-1}

In general:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{|2\pi\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- ► $\Sigma_{ij}^{-1} = 0$: x_i, x_j are conditionally independent given all the others
- Σ: covariance matrix
 - $\Sigma_{ij} = 0$: x_i, x_j are marginally independent
- Marginalizing out a variable
 - Leaves Σ unchanged but changes Σ^{-1}
 - This is crucial when parameterizing a Gaussian process

Consider two continuous random variables x and y with p(x, y)

• Sum rule:

$$p(x) = \int p(x, y) dy$$

• Product rule:

$$p(x, y) = p(y)p(x \mid y) = p(x)p(y \mid x)$$

Consider two continuous random variables x and y with p(x, y)

• Sum rule:

$$p(x) = \int p(x, y) dy$$

• Product rule:

$$p(x, y) = p(y)p(x \mid y) = p(x)p(y \mid x)$$

• Bayes' rule:

$$p(x \mid y) = \frac{p(x)p(y \mid x)}{p(y)}$$

• Expectation: $\mathbb{E}[X] \stackrel{\text{\tiny def}}{=} \int_{x \in \mathcal{X}} xp(x) dx.$

- Expectation: $\mathbb{E}[X] \stackrel{\text{\tiny def}}{=} \int_{x \in \mathcal{X}} xp(x) dx.$
- More generally, $\mathbb{E}_{p(X)}[g(X)] \stackrel{\text{def}}{=} \int_{x \in \mathcal{X}} g(x) p(x) dx$

- Expectation: $\mathbb{E}[X] \stackrel{\text{def}}{=} \int_{x \in \mathcal{X}} xp(x) dx.$
- More generally, $\mathbb{E}_{p(X)}[g(X)] \stackrel{\text{def}}{=} \int_{x \in \mathcal{X}} g(x)p(x)dx$
- Variance: $\mathbb{V}[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$

- Expectation: $\mathbb{E}[X] \stackrel{\text{def}}{=} \int_{x \in \mathcal{X}} x p(x) dx.$
- More generally, $\mathbb{E}_{p(X)}[g(X)] \stackrel{\text{def}}{=} \int_{x \in \mathcal{X}} g(x) p(x) dx$
- Variance: $\mathbb{V}[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$
- α -quantile: $x_{\alpha} = F^{-1}(\alpha)$ such that $p(X \le x_{\alpha}) = \alpha$

• For a $\mathcal{N}(\mu, \sigma^2)$: • 95% interval: $(\mu - 1.96\sigma, \mu + 1.96\sigma)$

Bayesian Linear Regression

• Take these two examples

• Take these two examples

• Take these two examples

• We are interested in estimating a function f(x) from data

• Take these two examples

- We are interested in estimating a function f(x) from data
- Most problems in Machine Learning can be cast this way!

What do Bayesian Models Have to Offer?

• Regression example

What do Bayesian Models Have to Offer?

• Classification example

• Data: $\mathcal{D} = \{\mathbf{x}^{(n)}, y^{(n)}\}_{n=1}^{N}, \mathbf{x}^{(n)} \in \mathbb{R}^{D_{x}}, y^{(n)} \in \mathbb{R}$

- Data: $\mathcal{D} = \{\mathbf{x}^{(n)}, y^{(n)}\}_{n=1}^{N}, \mathbf{x}^{(n)} \in \mathbb{R}^{D_{x}}, y^{(n)} \in \mathbb{R}$
- Inputs : $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})^{\top}$

- Data: $\mathcal{D} = \{\mathbf{x}^{(n)}, y^{(n)}\}_{n=1}^{N}, \mathbf{x}^{(n)} \in \mathbb{R}^{D_{x}}, y^{(n)} \in \mathbb{R}$
- Inputs : $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})^{\top}$
- Labels : $\mathbf{y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(N)})^{\top}$

- Data: $\mathcal{D} = \{\mathbf{x}^{(n)}, y^{(n)}\}_{n=1}^{N}, \mathbf{x}^{(n)} \in \mathbb{R}^{D_{x}}, y^{(n)} \in \mathbb{R}$
- Inputs : $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})^{\top}$
- Labels : $\mathbf{y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(N)})^{\top}$
- Goal: : $\mathbf{x} \stackrel{f(\mathbf{x})}{\rightarrow} \mathbf{y}$

- Data: $\mathcal{D} = \{\mathbf{x}^{(n)}, y^{(n)}\}_{n=1}^{N}, \mathbf{x}^{(n)} \in \mathbb{R}^{D_{x}}, y^{(n)} \in \mathbb{R}$
- Inputs : $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})^{\top}$
- Labels : $\mathbf{y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(N)})^{\top}$
- Goal: : $\mathbf{x} \stackrel{f(\mathbf{x})}{\rightarrow} \mathbf{y}$
- Implement a linear combination of basis functions

$$f(\mathbf{x}) = \sum_{j=1}^{D} w_j \varphi_j(\mathbf{x}) = \mathbf{w}^\top \varphi(\mathbf{x})$$

with

$$\boldsymbol{\varphi}(\mathbf{X}) = (\varphi_1(\mathbf{X}), \dots, \varphi_D(\mathbf{X}))^\top$$

- Data: $\mathcal{D} = \{\mathbf{x}^{(n)}, y^{(n)}\}_{n=1}^{N}, \mathbf{x}^{(n)} \in \mathbb{R}^{D_{x}}, y^{(n)} \in \mathbb{R}$
- Inputs : $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})^{\top}$
- Labels : $\mathbf{y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(N)})^{\top}$
- Goal: : $\mathbf{x} \stackrel{f(\mathbf{x})}{\rightarrow} \mathbf{y}$
- Implement a linear combination of basis functions

$$f(\mathbf{x}) = \sum_{j=1}^{D} w_j \varphi_j(\mathbf{x}) = \mathbf{w}^\top \varphi(\mathbf{x})$$

with

$$\boldsymbol{\varphi}(\mathbf{X}) = (\varphi_1(\mathbf{X}), \dots, \varphi_D(\mathbf{X}))^\top$$

Each $\varphi_i(\mathbf{x})$ is a (non-linear) feature on \mathbf{x} , e.g. $x_1, x_2, x_1^2, x_2^2, x_1x_2...$

- Data: $\mathcal{D} = \{\mathbf{x}^{(n)}, y^{(n)}\}_{n=1}^{N}, \mathbf{x}^{(n)} \in \mathbb{R}^{D_{x}}, y^{(n)} \in \mathbb{R}$
- Inputs : $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)})^{\top}$
- Labels : $\mathbf{y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(N)})^{\top}$
- Goal: : $\mathbf{x} \stackrel{f(\mathbf{x})}{\rightarrow} \mathbf{y}$
- Implement a linear combination of basis functions

$$f(\mathbf{x}) = \sum_{j=1}^{D} w_j \varphi_j(\mathbf{x}) = \mathbf{w}^\top \varphi(\mathbf{x})$$

with

$$\boldsymbol{\varphi}(\mathbf{X}) = (\varphi_1(\mathbf{X}), \dots, \varphi_D(\mathbf{X}))^\top$$

Each φ_i(**x**) is a (non-linear) feature on **x**, e.g. x₁, x₂, x₁², x₂², x₁x₂...
 Weights : **w** = (w₁,..., w_D)^T → parameters to *estimate* from data

• Minimization of a loss function

- Minimization of a loss function
- Maximization of conditional likelihood p(y|X, w)

- Minimization of a loss function
- Maximization of conditional likelihood p(y|X, w)
- Assume $p(y | \mathbf{w}, \mathbf{x}) = \mathcal{N}(y; \mathbf{w}^{\top} \varphi(\mathbf{x}), \sigma^2)$

- Minimization of a loss function
- Maximization of conditional likelihood p(y|X, w)
- Assume $p(y | \mathbf{w}, \mathbf{x}) = \mathcal{N}(y; \mathbf{w}^{\top} \varphi(\mathbf{x}), \sigma^2)$
- Assume iid observations, i.e., $p(\mathbf{y} | \mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y^{(n)} | \mathbf{x}^{(n)}, \mathbf{w})$

- Minimization of a loss function
- Maximization of conditional likelihood p(y|X, w)
- Assume $p(y | \mathbf{w}, \mathbf{x}) = \mathcal{N}(y; \mathbf{w}^{\top} \boldsymbol{\varphi}(\mathbf{x}), \sigma^2)$
- Assume iid observations, i.e., $p(\mathbf{y} | \mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y^{(n)} | \mathbf{x}^{(n)}, \mathbf{w})$
- Estimate

$$\hat{\mathbf{w}}_{\mathsf{ML}} = \arg\max_{\mathbf{w}} \log p(\mathbf{y} \,|\, \mathbf{X}, \mathbf{w})$$

- Minimization of a loss function
- Maximization of conditional likelihood p(y|X, w)
- Assume $p(y | \mathbf{w}, \mathbf{x}) = \mathcal{N}(y; \mathbf{w}^{\top} \boldsymbol{\varphi}(\mathbf{x}), \sigma^2)$
- Assume iid observations, i.e., $p(\mathbf{y} | \mathbf{X}, \mathbf{w}) = \prod_{n=1}^{N} p(y^{(n)} | \mathbf{x}^{(n)}, \mathbf{w})$
- Estimate

$$\hat{\mathbf{w}}_{\mathsf{ML}} = rg\max_{\mathbf{w}} \log p(\mathbf{y} \,|\, \mathbf{X}, \mathbf{w})$$

We will incorporate uncertainty about the weights instead

Edwin V. Bonilla, CSIRO's Data61

Bayesian Inference

- Inputs : $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\top}$
- Labels : $\mathbf{y} = (y_1, \dots, y_N)^{\top}$
- Weights : $\mathbf{W} = (W_1, \dots, W_D)^\top$

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

Bayesian Linear Regression

• Modelling observations as noisy realizations of a linear combination of the features:

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\Phi \mathbf{w}, \sigma^2 \mathbf{I})$$

• $\Phi = \Phi(X)$ has entries

$$\Phi = \begin{bmatrix} \varphi_1(\mathbf{X}_1) & \dots & \varphi_D(\mathbf{X}_1) \\ \vdots & \ddots & \vdots \\ \varphi_1(\mathbf{X}_N) & \dots & \varphi_D(\mathbf{X}_N) \end{bmatrix}$$

Bayesian Linear Regression

• Modelling observations as noisy realizations of a linear combination of the features:

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\Phi \mathbf{w}, \sigma^2 \mathbf{I})$$

• $\Phi = \Phi(X)$ has entries

$$\Phi = \begin{bmatrix} \varphi_1(\mathbf{X}_1) & \dots & \varphi_D(\mathbf{X}_1) \\ \vdots & \ddots & \vdots \\ \varphi_1(\mathbf{X}_N) & \dots & \varphi_D(\mathbf{X}_N) \end{bmatrix}$$

Gaussian prior over model parameters:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathsf{S})$$

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

• Bayes rule:

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

• Prior density: p(w)

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Prior density: p(w)
 - ► Anything we know about parameters *before* we see any data

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Prior density: p(w)
 - Anything we know about parameters before we see any data
- Conditional Likelihood : p(y|X,w)

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Prior density: p(w)
 - Anything we know about parameters before we see any data
- Conditional Likelihood : p(y|X, w)
 - Measure of "fitness"

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Prior density: p(w)
 - Anything we know about parameters before we see any data
- Conditional Likelihood : p(y|X,w)
 - Measure of "fitness"
- Marginal likelihood: $p(\mathbf{y}|\mathbf{X})$

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Prior density: p(w)
 - Anything we know about parameters before we see any data
- Conditional Likelihood : p(y|X,w)
 - Measure of "fitness"
- Marginal likelihood: $p(\mathbf{y}|\mathbf{X})$
 - It is a normalization constant–ensures $\int p(\mathbf{w}|\mathbf{X}, \mathbf{y}) d\mathbf{w} = 1$.

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Prior density: p(w)
 - Anything we know about parameters before we see any data
- Conditional Likelihood : p(y|X,w)
 - Measure of "fitness"
- Marginal likelihood: $p(\mathbf{y}|\mathbf{X})$
 - It is a normalization constant–ensures $\int p(\mathbf{w}|\mathbf{X}, \mathbf{y}) d\mathbf{w} = 1$.
- Posterior density: p(w|X, y)

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{\int p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{w})p(\mathbf{y}|\mathbf{X}, \mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Prior density: p(w)
 - Anything we know about parameters before we see any data
- Conditional Likelihood : p(y|X,w)
 - Measure of "fitness"
- Marginal likelihood: $p(\mathbf{y}|\mathbf{X})$
 - It is a normalization constant–ensures $\int p(w|X, y) dw = 1$.
- Posterior density: p(w|X, y)
 - Distribution over parameters after observing data

• Recall Gaussian prior over weights $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$

- Recall Gaussian prior over weights $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$
- Also Gaussian likelihood assumption $p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\Phi \mathbf{w}, \sigma^2 \mathbf{I})$

- Recall Gaussian prior over weights $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$
- Also Gaussian likelihood assumption $p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\Phi \mathbf{w}, \sigma^2 \mathbf{I})$
- Posterior must be Gaussian (Proof in the Appendix)

 $p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2) = \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$

- Recall Gaussian prior over weights $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$
- Also Gaussian likelihood assumption $p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\Phi \mathbf{w}, \sigma^2 \mathbf{I})$
- Posterior must be Gaussian (Proof in the Appendix)

$$p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2) = \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$$

• Covariance:
$$\Sigma = \left(\frac{1}{\sigma^2} \Phi^{\top} \Phi + S^{-1}\right)^{-1}$$
, Mean: $\mu = \frac{1}{\sigma^2} \Sigma \Phi^{\top} \mathbf{y}$

- Recall Gaussian prior over weights $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$
- Also Gaussian likelihood assumption $p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\Phi \mathbf{w}, \sigma^2 \mathbf{I})$
- Posterior must be Gaussian (Proof in the Appendix)

$$p(\mathsf{w}|\mathsf{X},\mathsf{y},\sigma^2) = \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$$

- Covariance: $\Sigma = \left(\frac{1}{\sigma^2} \Phi^{\top} \Phi + S^{-1}\right)^{-1}$, Mean: $\mu = \frac{1}{\sigma^2} \Sigma \Phi^{\top} \mathbf{y}$
- Mean of posterior is equal to its mode

- Recall Gaussian prior over weights $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$
- Also Gaussian likelihood assumption $p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\Phi \mathbf{w}, \sigma^2 \mathbf{I})$
- Posterior must be Gaussian (Proof in the Appendix)

$$p(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2) = \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$$

• Covariance:
$$\Sigma = \left(\frac{1}{\sigma^2} \Phi^{\top} \Phi + S^{-1}\right)^{-1}$$
, Mean: $\mu = \frac{1}{\sigma^2} \Sigma \Phi^{\top} \mathbf{y}$

- Mean of posterior is equal to its mode
- Maximum a posteriori (MAP) :

$$\hat{\mathbf{w}}_{\mathsf{MAP}} = \arg\max_{\mathbf{w}} \log p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \sigma^2) = \arg\max_{\mathbf{w}} \left[\log p(\mathbf{w}) + \log p(\mathbf{y} | \mathbf{w}, \mathbf{X}, \sigma^2) \right]$$

Bayesian Linear Regression: Predictive Distribution

We are interested in making predictions at a new test point \boldsymbol{x}_{\ast}

• We obtain the predictive distribution by *averaging* over all possible parameter values

$$p(\mathbf{y}_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*, \sigma^2) = \int p(\mathbf{y}_* | \mathbf{w}, \mathbf{x}_*, \sigma^2) p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \sigma^2) d\mathbf{w}$$
$$= \mathcal{N}(\mu_*, \sigma_*^2)$$

• We obtain the predictive distribution by *averaging* over all possible parameter values

$$p(\mathbf{y}_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*, \sigma^2) = \int p(\mathbf{y}_* | \mathbf{w}, \mathbf{x}_*, \sigma^2) p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \sigma^2) d\mathbf{w}$$
$$= \mathcal{N}(\mu_*, \sigma_*^2)$$

• Predictive mean: $\mu_* = \varphi(\mathbf{X}_*)^\top \boldsymbol{\mu} = \sigma^{-2} \varphi(\mathbf{X}_*)^\top \boldsymbol{\Sigma} \Phi^\top \mathbf{y}$

• We obtain the predictive distribution by *averaging* over all possible parameter values

$$p(\mathbf{y}_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*, \sigma^2) = \int p(\mathbf{y}_* | \mathbf{w}, \mathbf{x}_*, \sigma^2) p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \sigma^2) d\mathbf{w}$$
$$= \mathcal{N}(\mu_*, \sigma_*^2)$$

- Predictive mean: $\mu_* = \varphi(\mathbf{X}_*)^\top \boldsymbol{\mu} = \sigma^{-2} \varphi(\mathbf{X}_*)^\top \boldsymbol{\Sigma} \boldsymbol{\Phi}^\top \mathbf{y}$
 - Linear predictor

• We obtain the predictive distribution by *averaging* over all possible parameter values

$$p(\mathbf{y}_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*, \sigma^2) = \int p(\mathbf{y}_* | \mathbf{w}, \mathbf{x}_*, \sigma^2) p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \sigma^2) d\mathbf{w}$$
$$= \mathcal{N}(\mu_*, \sigma_*^2)$$

• Predictive mean: $\mu_* = \varphi(\mathbf{X}_*)^\top \boldsymbol{\mu} = \sigma^{-2} \varphi(\mathbf{X}_*)^\top \boldsymbol{\Sigma} \Phi^\top \mathbf{y}$

Linear predictor

• Predictive variance: $\sigma_*^2 = \sigma^2 + \varphi(\mathbf{X}_*)^\top \Sigma \varphi(\mathbf{X}_*)$

• We obtain the predictive distribution by *averaging* over all possible parameter values

$$p(\mathbf{y}_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*, \sigma^2) = \int p(\mathbf{y}_* | \mathbf{w}, \mathbf{x}_*, \sigma^2) p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \sigma^2) d\mathbf{w}$$
$$= \mathcal{N}(\mu_*, \sigma_*^2)$$

- Predictive mean: $\mu_* = \varphi(\mathbf{X}_*)^\top \boldsymbol{\mu} = \sigma^{-2} \varphi(\mathbf{X}_*)^\top \boldsymbol{\Sigma} \Phi^\top \mathbf{y}$
 - Linear predictor
- Predictive variance: $\sigma_*^2 = \sigma^2 + \varphi(\mathbf{X}_*)^\top \Sigma \varphi(\mathbf{X}_*)$
- $\cdot\,$ Note computation of D-dimensional inverse Σ

To make a point prediction we need to consider the expected loss (or risk):

$$y_{\text{opt}} = \underset{y_{\text{pred}}}{\arg\min} \int \text{Loss}(y_*, y_{\text{pred}}) p(y_* | \mathbf{X}, \mathbf{y}, \mathbf{x}_*, \sigma^2) dy_*$$

- e.g., square loss: $Loss(y_*, y_{pred}) = (y_* y_{pred})^2$
- · Predictions at the mean of the distribution
- c.f. empirical risk minimization (ERM)

Edwin V. Bonilla, CSIRO's Data61

Edwin V. Bonilla, CSIRO's Data61

www.kahoot.it

- Importance of quantification of uncertainty in machine learning
- Probability theory is key
- · Joint distributions, marginals, conditionals
- · Bayesian inference: Prior, likelihood, posterior
- Bayesian linear (in-the-parameters) regression
 - ► Full predictive distribution in closed-form
 - Fixed set of basis functions
 - Cubic cost on these features' dimensionality

Appendix

• Ignoring normalizing constants, the posterior is:

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^{2}) \propto \exp\left\{-\frac{1}{2}(\mathbf{w} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{w} - \boldsymbol{\mu})\right\}$$
$$= \exp\left\{-\frac{1}{2}(\mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{w} - 2\mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu})\right\}$$
$$\propto \exp\left\{-\frac{1}{2}(\mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{w} - 2\mathbf{w}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu})\right\}$$

• Ignoring non-w terms, the prior multiplied by the likelihood is:

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^{2})$$

$$\propto \exp\left\{-\frac{1}{2\sigma^{2}}(\mathbf{y} - \Phi\mathbf{w})^{\top}(\mathbf{y} - \Phi\mathbf{w})\right\} \exp\left\{-\frac{1}{2}\mathbf{w}^{\top}\mathbf{S}^{-1}\mathbf{w}\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left(\mathbf{w}^{\top}\left[\frac{1}{\sigma^{2}}\Phi^{\top}\Phi + \mathbf{S}^{-1}\right]\mathbf{w} - \frac{2}{\sigma^{2}}\mathbf{w}^{\top}\Phi^{\top}\mathbf{y}\right)\right\}$$

• Posterior (from previous slide):

$$\propto \exp\left\{-\frac{1}{2}(\mathbf{w}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{w}-2\mathbf{w}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu})\right\}$$

Bayesian Linear Regression - Finding posterior parameters

- Equate individual terms on each side.
- Covariance:

$$w^{\top} \Sigma^{-1} w = w^{\top} \left[\frac{1}{\sigma^2} \Phi^{\top} \Phi + S^{-1} \right] w$$
$$\Sigma = \left(\frac{1}{\sigma^2} \Phi^{\top} \Phi + S^{-1} \right)^{-1}$$

• Mean:

$$2\mathbf{w}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \boldsymbol{\mu} = \frac{2}{\sigma^2} \mathbf{w}^{\mathsf{T}} \mathbf{\Phi}^{\mathsf{T}} \mathbf{y}$$
$$\boldsymbol{\mu} = \frac{1}{\sigma^2} \mathbf{\Sigma} \mathbf{\Phi}^{\mathsf{T}} \mathbf{y}$$