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Suggested Readings

Machine Learning: A Probabilistic Perspective
Kevin P. Murphy, 2012

Bayesian Reasoning and Machine Learning
David Barber, 2012

Pattern Recognition and Machine Learning
Christopher Bishop, 2006

Gaussian Processes for Machine Learning
Carl E. Rasmussen and Christopher K. I. Williams, 2006
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Motivation (1)

• Medical diagnosis in an intensive care unit
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Motivation (2)

• Data fusion for geothermal energy exploration
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Motivation (3)

• Quantification of Uncertainty with Expensive Computational
Models: Climate modelling

Kennedy and O’Hagan, RSS-B, 2001Edwin V. Bonilla, CSIRO’s Data61 5



Motivation (4)

• Quantification of Uncertainty with No Models: Classification
and progression modelling of neurodegenerative diseases

Filippone et al., AoAS, 2012
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A Unified Framework

A model might be expensive to simulate/inaccurate

• Emulate model/discrepancy using a surrogate

A model might not even be available

• Make use of a flexible model, e.g., Neural Nets

Quantification of Uncertainty

• Bayesian neural nets
• Gaussian Processes
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Three Lectures: Outline

1 Introduction to probabilistic modelling
I Machine Learning and Probability Theory
I Bayesian Linear Regression

2 Gaussian Processes
I Gaussian Processes for Regression
I Model Approximations

3 Advanced Topics
I Approximate Inference
I Applications, Challenges & Opportunities
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This Lecture: Outline

1 Basic Machine Learning Concepts

2 Probability Theory Refresher

3 Bayesian Linear Regression
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Basic Machine Learning Concepts



Basic Machine Learning Concepts (1)

Types of machine learning

• Supervised
I Classification
I Regression

• Unsupervised
I Dimensionality reduction
I Clustering
I Latent variable modelling
I Density estimation

• Reinforcement learning
I Delayed reward
I Acting and planning
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Basic Machine Learning Concepts (2)

• The need for probabilistic predictions
I Risk assessment, decision theory
I Active learning
I Reinforcement learning

• The curse of dimensionality

• Generalisation
I Overfitting, model selection
I Validation set, cross validation
I No free lunch theorem
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Probability Theory Refresher



Discrete Random Variables

• X ∈ X : Random variable (r.v.) X can take on any value from X
• p(X = x) or simply p(x): Probability that X = x
• Probability mass function (pmf):

0 ≤ p(x) ≤ 1,
∑
x∈X

p(x) = 1

• B ∈ {r,b}: r.v. for the box
taking on values red or blue

• F ∈ {a,o}: r.v. for the fruit
taking on values apple or
orange

We can specify a joint distribution p(B, F) = P(B)P(F|B)
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The Rules of Probability and Terminology

• Joint p(X = x, Y = x)

• Marginal (using the sum rule):

p(Y = y) =
∑
x∈X

p(X = x, Y = y)

• Product rule:

p(X, Y) = p(Y)p(X | Y)
= p(X)p(Y | X)

• Conditional:

p(x = x | Y = y) = p(X = x, Y = Y)
p(Y = y)
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How to Update our Beliefs Given New Data

Bayesian Inference
Bayesian inference provides us with a a mathematical framework
explaining how to change our (prior) beliefs in the light of new
evidence.

posterior︷ ︸︸ ︷
p(X = x | Y = y) =

prior︷ ︸︸ ︷
p(X = x)

likelihood︷ ︸︸ ︷
p(Y = y | X = x)
p(Y = y)︸ ︷︷ ︸

evidence:p(Y=y)=
∑

x′ p(X=x′)p(Y=y | X=x′)

Example: Suppose you have been tested positive for a disease;
what is the probability that you actually have the disease?

• X ∈ {0, 1}: Whether you have the disease
• Y ∈ {0, 1}: Outcome of the test

Computational challenges
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Statistical Independence

In our fruit-box example, suppose that both boxes (red and blue)
contain the same proportion of apples and oranges, say:

p(F = a |B = r) = p(F = a |B = b) = 0.2
p(F = o |B = r) = p(F = o |B = b) = 0.8

The probability of selecting an apple (or an orange) is
independent of the box that is chosen.

Independent Variables
Two variables X and Y are statistically independent iff their joint
distribution factorises into the product of their marginals:

X ⊥⊥ Y ↔ p(X, Y) = P(X)p(Y)

This definition generalises to more than two variables.
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Continuous Random Variables

Probability density function
(pdf) p(x):
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Cumulative distribution
function (cdf) F(x):
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The Gaussian Distribution: 1-dimensional Case

p(x) = N (x;µ, σ2)
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The Gaussian Distribution: 2-dimensional Case
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The marginal and the conditional distributions are also Gaussians
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The Gaussian Distribution

In general:

p(x |µ,Σ) = N (x;µ,Σ) = 1
|2πΣ|1/2

exp

(
− 1
2
(x− µ)TΣ−1(x− µ)

)

• Σ−1: precision matrix

I Σ−1
ij = 0: xi, xj are conditionally independent given all the others

• Σ: covariance matrix

I Σij = 0: xi, xj are marginally independent

• Marginalizing out a variable

I Leaves Σ unchanged but changes Σ−1

I This is crucial when parameterizing a Gaussian process
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The Rules of Probability: Continuous Case

Consider two continuous random variables x and y with p(x, y)

• Sum rule:
p(x) =

∫
p(x, y)dy

• Product rule:

p(x, y) = p(y)p(x | y) = p(x)p(y | x)

• Bayes’ rule:

p(x | y) = p(x)p(y | x)
p(y)
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The Rules of Probability: Continuous Case

Consider two continuous random variables x and y with p(x, y)

• Sum rule:
p(x) =

∫
p(x, y)dy

• Product rule:

p(x, y) = p(y)p(x | y) = p(x)p(y | x)

• Bayes’ rule:

p(x | y) = p(x)p(y | x)
p(y)

Edwin V. Bonilla, CSIRO’s Data61 20



Expectation, Variance and Quantiles

• Expectation: E[X] def=
∫
x∈X xp(x)dx.

• More generally, Ep(X)[g(X)]
def
=

∫
x∈X g(x)p(x)dx

• Variance: V[X] = E[(X − E[X])2]

• α-quantile: xα = F−1(α) such that p(X ≤ xα) = α

• For a N (µ, σ2):
I 95% interval:

(µ− 1.96σ, µ+ 1.96σ)
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Bayesian Linear Regression



Learning from Data: Function Estimation

• Take these two examples
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What do Bayesian Models Have to Offer?

• Regression example
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What do Bayesian Models Have to Offer?

• Classification example

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Edwin V. Bonilla, CSIRO’s Data61 24



Linear-in–the-Parameters Models: Problem Formulation

• Data: D = {x(n), y(n)}Nn=1, x(n) ∈ RDx , y(n) ∈ R

• Inputs : X = (x(1), . . . , x(N))>

• Labels : y = (y(1), . . . , y(N))>

• Goal: : x f (x)→ y

• Implement a linear combination of basis functions

f (x) =
D∑
j=1

wjϕj(x) = w>ϕ (x)

with
ϕ (x) = (ϕ1(x), . . . , ϕD(x))>

I Each ϕi(x) is a (non-linear) feature on x, e.g. x1, x2, x21 , x22, x1x2 . . .
I Weights : w = (w1, . . . ,wD)> → parameters to estimate from data
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Probabilistic Interpretation of Loss Minimization

Quadratic Loss p(y|X,w) ∝ exp(−Loss)
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• Minimization of a loss function

• Maximization of conditional likelihood p(y|X,w)
• Assume p(y |w, x) = N (y;w>ϕ(x), σ2)
• Assume iid observations, i.e., p(y | X,w) =

∏N
n=1 p(y(n) | x(n),w)

• Estimate
ŵML = argmax

w
log p(y | X,w)

We will incorporate uncertainty about the weights instead
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ŵML = argmax

w
log p(y | X,w)

We will incorporate uncertainty about the weights instead

Edwin V. Bonilla, CSIRO’s Data61 26



Probabilistic Interpretation of Loss Minimization

Quadratic Loss p(y|X,w) ∝ exp(−Loss)

0
5

10
15

0.
0

0.
4

0.
8

• Minimization of a loss function
• Maximization of conditional likelihood p(y|X,w)
• Assume p(y |w, x) = N (y;w>ϕ(x), σ2)

• Assume iid observations, i.e., p(y | X,w) =
∏N
n=1 p(y(n) | x(n),w)

• Estimate
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Bayesian Inference

• Inputs : X = (x1, . . . , xN)>

• Labels : y = (y1, . . . , yN)>

• Weights : w = (w1, . . . ,wD)>

p(w) p(w|y, X)

p(w|y, X) = p(y|X,w)p(w)∫
p(y|X,w)p(w)dw
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Bayesian Linear Models in Action

• Today’s posterior is tomorrow’s prior
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Bayesian Linear Models in Action

• Today’s posterior is tomorrow’s prior
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Bayesian Linear Models in Action

• Today’s posterior is tomorrow’s prior
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Bayesian Linear Regression

• Modelling observations as noisy realizations of a linear
combination of the features:

p(y|w, X, σ2) = N (Φw, σ2I)

• Φ = Φ(X) has entries

Φ =

 ϕ1(x1) . . . ϕD(x1)
... . . . ...

ϕ1(xN) . . . ϕD(xN)



• Gaussian prior over model parameters:

p(w) = N (0, S)
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Bayesian Linear Regression: Posterior Distribution

• Bayes rule:

p(w|X, y) = p(w)p(y|X,w)∫
p(w)p(y|X,w)dw

=
p(w)p(y|X,w)

p(y|X)

• Prior density: p(w)

I Anything we know about parameters before we see any data

• Conditional Likelihood : p(y|X,w)

I Measure of “fitness”

• Marginal likelihood: p(y|X)

I It is a normalization constant—ensures
∫
p(w|X, y) dw = 1.

• Posterior density: p(w|X, y)

I Distribution over parameters after observing data
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Bayesian Linear Regression: Posterior Distribution

• Recall Gaussian prior over weights p(w) = N (0, S)

• Also Gaussian likelihood assumption p(y|w, X, σ2) = N (Φw, σ2I)
• Posterior must be Gaussian (Proof in the Appendix)

p(w|X, y, σ2) = N (µ,Σ)

• Covariance: Σ =

(
1
σ2

Φ>Φ+ S−1
)−1

, Mean: µ =
1
σ2

ΣΦ>y

• Mean of posterior is equal to its mode
• Maximum a posteriori (MAP) :

ŵMAP = argmax
w

log p(w | X, y, σ2) = argmax
w

[
log p(w) + log p(y|w, X, σ2)

]
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Bayesian Linear Regression: Predictive Distribution

We are interested in making predictions at a new test point x∗

• We obtain the predictive distribution by averaging over all
possible parameter values

p(y∗ | X, y, x∗, σ2) =
∫
p(y∗ |w, x∗, σ2)p(w | X, y, σ2)dw

= N (µ∗, σ
2
∗)

• Predictive mean: µ∗ = ϕ(x∗)>µ = σ−2ϕ(x∗)>ΣΦ>y

I Linear predictor

• Predictive variance: σ2∗ = σ2 +ϕ(x∗)>Σϕ(x∗)
• Note computation of D-dimensional inverse Σ
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Bayesian Linear Regression: Point Prediction

To make a point prediction we need to consider the expected loss
(or risk):

yopt = argmin
ypred

∫
Loss(y∗, ypred)p(y∗ | X, y, x∗, σ2)dy∗

• e.g., square loss: Loss(y∗, ypred) = (y∗ − ypred)2

• Predictions at the mean of the distribution
• c.f. empirical risk minimization (ERM)
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Bayesian Linear Regression Example
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Bayesian Linear Regression Example
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Bayesian Linear Regression Example
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Conclusions

• Importance of quantification of uncertainty in machine
learning

• Probability theory is key
• Joint distributions, marginals, conditionals
• Bayesian inference: Prior, likelihood, posterior
• Bayesian linear (in-the-parameters) regression
I Full predictive distribution in closed-form
I Fixed set of basis functions
I Cubic cost on these features’ dimensionality
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Appendix



Bayesian Linear Regression - Finding posterior parameters

• Ignoring normalizing constants, the posterior is:

p(w|X, y, σ2) ∝ exp

{
−
1
2
(w− µ)>Σ−1(w− µ)

}
= exp

{
−
1
2
(w>Σ−1w− 2w>Σ−1µ+ µ>Σ−1µ)

}
∝ exp

{
−
1
2
(w>Σ−1w− 2w>Σ−1µ)

}
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Bayesian Linear Regression - Finding posterior parameters

• Ignoring non-w terms, the prior multiplied by the likelihood is:

p(y|w, X, σ2)

∝ exp

{
−

1
2σ2

(y− Φw)>(y− Φw)
}
exp

{
−
1
2
w>S−1w

}
∝ exp

{
−
1
2

(
w>

[
1
σ2

Φ>Φ+ S−1
]
w−

2
σ2
w>Φ>y

)}

• Posterior (from previous slide):

∝ exp

{
−
1
2
(w>Σ−1w− 2w>Σ−1µ)

}
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Bayesian Linear Regression - Finding posterior parameters

• Equate individual terms on each side.

• Covariance:

w>Σ−1w = w>
[
1
σ2

Φ>Φ+ S−1
]
w

Σ =

(
1
σ2

Φ>Φ+ S−1
)−1

• Mean:

2w>Σ−1µ =
2
σ2
w>Φ>y

µ =
1
σ2

ΣΦ>y
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