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This Lecture: Outline

@ The Bayesian Linear Model Revisited

@ Gaussian Processes: Function-Space View
Gaussian Process Regression

Model Selection

© Challenges

@ Model Approximations
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The Bayesian Linear Model Revisited



Limitations of the Bayesian Linear Model

- Linear models require specifying a set of basis functions
» Polynomials, Trigonometric, ...??
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Limitations of the Bayesian Linear Model

- Linear models require specifying a set of basis functions
» Polynomials, Trigonometric, ...??

- Gaussian Processes work implicitly with a possibly infinite set
of basis functions!
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Bayesian Linear Model: Rewriting the Predictive Distribution

- Consider the predictive distribution of the noiseless targets:
p(f* |X,y,X*, 0_2) = N( * 5 U_2QDIZ¢Ty7 QOIZ(P*)7

def

1 —1
where, as before, ¥ = <(77¢T¢ + S‘1> and ¢, = p(x4)
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The Kernel Trick

- Note that in:
ke = ®Sep,, Rux = 0, Sip, and Ky = ST + o2

the features always enter in the form ¢(x) T Se(X')
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The Kernel Trick

- Note that in:
ke = ®Sep,, Rux = 0, Sip, and Ky = ST + o2

the features always enter in the form ¢(x) T Se(X')
- Thisis an inner product wrt S
- As Sis PD we can rewrite:

P(X) Sp(X') = p(x)7S?Sp(X')
= ("7 (x)"(s"*¢(X))
—_—— ——
H(x) P(X)
(X X') = 9(x) - p(X)

- k(+,-) Is called a kernel or covariance function
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Bayesian Linear Regression as a Kernel Machine

- Predictions can be expressed exclusively in terms of scalar
products as follows

R(xi,%;) = 9(xi) T ()
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Bayesian Linear Regression as a Kernel Machine

- Predictions can be expressed exclusively in terms of scalar
products as follows

R(xi,%;) = 9(xi) T ()

- This allows us to work with either R(-,-) or 4(+)

- Why is this useful??

- We can replace all occurrences of inner products by «(, )
- Working with 4(-) costs O(D?) memory, O(D?) time

- Working with R(-,-) costs O(N?) memory, O(N?) time

- We do not need to compute the feature vectors explicitly
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From a Prior over Weights to a Prior over Functions

- Consider the kinds of functions that can be generated from a
set of basis functions with random weights.
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From a Prior over Weights to a Prior over Functions

- Consider the kinds of functions that can be generated from a
set of basis functions with random weights.

- Then f(x) at a particular point is a random variable:
f(x) = wh(x) with w ~ A/(w|0,S)

- A collection f(xM), ..., f(xM), define a stochastic process
- With mean and the covariance function
Euw[f(x)] =0
Eu[f()f (X)] = ¢ (X)Sep(X)

- The Bayesian linear model is a Gaussian process
» The Function values have a joint Gaussian distribution
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Sample Functions from the Linear Model

@ Define pj(x) = exp(—3(x — p;)?), for j=1,2,3
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Sample Functions from the Linear Model

@ Define pj(x) = exp(—3(x — p;)?), for j=1,2,3
@ Construct &(i,j) = ¢;(x1), for j =1,2,3
© Draw w ~ N(w;0,1)
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Sample Functions from the Linear Model

@ Define pj(x) = exp(—3(x — p;)?), for j=1,2,3
@ Construct &(i,j) = ¢;(x1), for j =1,2,3

© Draw w ~ N(w;0,1)

Q Draw f = ow
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Gaussian Processes: Function-Space
View



Gaussian Processes: Function-Space View

Definition _
f(x) is distributed according to a Gaussian process iff for any

subset {x(", ..., x(M} the function values f(x("), ..., (x(M) follow
a Gaussian distribution.

£ ~ GP (u(x), K(x, X' 6))
u(x) = E[f ()]
R(%,X';6) = E[(F(x) — k00 (F(X) = (X))

- p(x): mean function, usually we make p(x) =0
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Gaussian Processes: Function-Space View

Definition _
f(x) is distributed according to a Gaussian process iff for any
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Gaussian Processes: Function-Space View

Definition _
f(x) is distributed according to a Gaussian process iff for any

subset {x(", ..., x(M} the function values f(x("), ..., (x(M) follow
a Gaussian distribution.

F(Q) ~ GP (n(x), 5(x,X; 0))
p(x) = E[f(x)]
K(x, X5 0) =E[(f(x) — p())(F(X) — u(x))]
- p(x): mean function, usually we make p(x) =0
k(x,x’; 0): parameterized covariance function
« Making f= (FOXM), ..., fxXMNT then f ~ N (s, K)
- Consistency: (f1,f,) ~ N(f; u, K) — f1 ~ N(f1; pq, Kp)
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The Covariance Function (Kernel)

- It specifies the covariance between pairs of random variables:
Cov(f(xP), f(x(D)) = w(x?), x9); 0)

- Notion of similarity
- Let K be the covariance or Gram matrix, i.e., K;; = r(x(), x0))

- It must generate a positive semidefinite (PSD) matrix at any
subset of points, i.e. b Kb > 0, vb € RN

- Stationary: 9(x — x’)-translation invariant

- Isotropic: ¥(||x — x'||)
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Samples from a Gaussian Process
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Samples from a Gaussian Process

b
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Samples from a Gaussian Process

b
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Samples from a Gaussian Process

i
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Computing with Infinite Vectors

GP prior GP regression example Inference result

label
o =
1 |
<
label
ST
| |
label
o r
| |
\%
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The Squared Exponential (SE) Covariance Function

(X, X';0) = o’ exp (—;(x —xC(x— x’)>

- o2 is the signal variance
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The Squared Exponential (SE) Covariance Function

(X, X';0) = o’ exp (—;(x —xC(x— x’)>

- o2 is the signal variance

- Cis a symmetric matrix that can have different
parameterizations

- C = (7l isotropic SE

- C = diag(€)~? with £ = (¢4, ..., ¢p): Automatic Relevance
Determination (ARD)

- Each ¢; is known as the characteristic length-scale: distance for
which the function values are expected to vary significantly
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Samples from a GP with a SE Covariance Function
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Samples from a GP with a SE Covariance Function
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Samples from a GP with a SE Covariance Function

) 0 4 6 -6 [ 4 6
Input x Input x
_ 2 _ 2
{=102="1 (=0.1,02=1
6
4
2|
e
o
-2
-4
T e 4 2 0 4 6
Input x
— 2
(=105="4
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Samples from a GP with a SE Covariance Function

6 8
4 4]
2 2
- -
80 EX
g &
o o
2| -2
4f -4
-6 0 4 6 6 0 4 6
Input x Input x

(=102=1 (=0.1,02=1

6 8
4 4]
2 2
-
0 20
£
o
2| -2
4|

4 6 R

Outputy

% 4 2 o0 2
Input x

(=102=4 (=0.1,02=4
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Gaussian Processes for Regression

- Data: D = {X(n),y(n)}r’\]l:1, x(M e RPx, y(M e R
« Inputs : X = (x(V, ..., x(M)T
+ Labels: y = (y“), o ,y(N))T

- Goal: : xfg)y

- Prior over latent variables: p(f|X) = N(f]0, K)
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Gaussian Processes for Regression

- Data: D = {X(n),y(n)}r’\]l:1, x(M e RPx, y(M e R
« Inputs : X = (x(V, ..., x(M)T
+ Labels: y = (y“), o ,y(N))T

- Goal: : xfg)y

- Prior over latent variables: p(f|X) = N(f|0, K)
- Conditional Likelihood : p(y[f) = N (y[f, o°I)
- Marginal likelihood: p(y|X) = N(y]0, K + o°I)
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Gaussian Processes for Regression

- Data: D = {x(”)’y(”)}gﬁl x(N e ROx, y() ¢ R
« Inputs : X = (x(V, ..., x(M)T
+ Labels: y = (y“), o ,y(N))T

- Goal: : xfg)y

- Prior over latent variables: p(f|X) = N(f]0, K)

- Conditional Likelihood : p(y[f) = N (y[f, o°I)

- Marginal likelihood: p(y|X) = N(y]0, K + o°I)

- Predictive distribution: can use Bayes' rule but easily obtained
by realizing that the joint over y and f, is a Gaussian
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GP Regression: Predictive Distribution

y K(X,X) + anl  k(X, Xx)
R Cing )
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GP Regression: Predictive Distribution

f* k(x*vx)
Denoting k. = K(X, x.) and Ky = K(X, X) + o2

[ y ] ~N<o KO, X) + onl - k(X %) )
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GP Regression: Predictive Distribution
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GP Regression: Predictive Distribution

y K(X,X) + anl  k(X, Xx)
R Cing )

Denoting k. = K(X,x) and Ky = K(X,X) + o2 then:
P(flX v, %) = N(f E[fi], VIS,
IEl-f*] - kIK*'Iy7
T —
VIf,] = — kKK,

- E[f,]: Linear combination of N observations, i.e. linear predictor
- Say a = (K + o21)~ "y then E[f.] = S0, air(x(M, x,)
- V[f«] does not depend on'y

- In fact we have a Gaussian posterior process
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PRIOR

DATA AND POSTERIOR

4 L L L L L L L
-6 -4 -2 0 2 4 6

- Smooth functions
- Closeness in input space — closeness in output space
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Model Selection

- Covariance function and its parameters (hyper-parameters)
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Model Selection

- Covariance function and its parameters (hyper-parameters)

- Likelihood parameters

- E.g. for the SE: k(x,X;0) = o exp (—3(x — X) C(x — X))

- Define 6 = {02,C, 0’}

- We can do cross-validation (potential problems?)

- We focus here on the so-called type Il maximum likelihood,

- Integrate out the “parameters” of the GP: (which parameters?)

p(YIX, 0) = / p(yIf,X, )p(fIX, 6)df
= N (y|0,K + &°l)
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Log Marginal Likelihood

1 1
£ =logp(y[X, 0) = =5y (K+ o?1) "y~ log|K + o°l|

data-fit complexity
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Log Marginal Likelihood

1 1
£ =logp(y[X, 0) = =5y (K+ o?1) "y~ log|K + o°l|

data-fit complexity

- Isotropic SE

- 02 =10%2=0.0
- =1

+- N=20
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Log Marginal Likelihood

1 1
£ =logp(y[X, 0) = =5y (K+ o?1) "y~ log|K + o°l|

- Isotropic SE

- 02 =10%2=0.0
- =1

+- N=20
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data-fit

Log probability

50

complexity

- - -Data—fit |
- - -Complexity !
—Total |
-100 X :
10 10 10

Length-scale



Hyper-parameter Learning

Let Ky = K + o
oL 1 . 0Ky . 0K,
= Tk DYy - D (kDY
o6, 27 ag, v Y 2"\ Y g

1
2
L T_ -1 Ky
> tr ((aa Ky )89:'
where o = Kjy.

- Can use gradient-based optimization

Edwin V. Bonilla, CSIRO’s Data61 20



Hyper-parameter Learning

Let Ky = K + o
oL 1 . 0Ky . 0K,
= Tk DYy - D (kDY
o6, 27 ag, v Y 2"\ Y g

1
2
L T_ -1 Ky
> tr ((aa Ky )89:'
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Hyper-parameter Learning

Let Ky = K 4 o2I:

1 Ky 0K,

9% _ it Dyty - Ly (k1Y

a0, 2™ g,y Y2 Y g
1
2

oK
T -1 9Ky
tr ((aa Ky )89:')

where o = Kjy.
- Can use gradient-based optimization
- General approach and only needs derivatives of the covariance
- Non-convex optimization
- Multiple local optima — different explanations of the data

- Computational cost?

Edwin V. Bonilla, CSIRO’s Data61 20



Automatic Relevance Determination (ARD)

- Inverse of the length-scale — relevance of the dimension.
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Automatic Relevance Determination (ARD)

- Inverse of the length-scale — relevance of the dimension.

~ <

0

Learned lengh-scale for irrelevant dimension: 1.0557 x 10°
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Gaussian Processes as Infinitely-Wide Shallow Neural Nets

- Take W) ~ N(0, ;1)

- Central Limit Theorem implies that f
is Gaussian

- f has zero-mean
+ cov(f) = Epyo o [@XWOY WO WD To(x()T]

Neal, LNS, 1996
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Gaussian Processes as Infinitely-Wide Shallow Neural Nets

+ Take W) ~ N(0, o)
- Central Limit Theorem implies that f
Is Gaussian

- f has zero-mean
+ cov(f) = anEp oy [OXWO)D(XW ) T]
- Some choices of ® lead to analytic expression of known
kernels (RBF, Matérn, arc-cosine, Brownian motion, ...)
Neal, LNS, 1996
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Challenges

- Non-Gaussian Likelihoods?
- Scalability?
- Kernel design?
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Marginal likelihood of GP models: non-Gaussian case

- Marginal likelihood

p(y[X, 0) = / p(yI)P(FIX, O)df

can be computed analytically if p(y|f) is Gaussian
- What if p(v|f) is not Gaussian?

Edwin V. Bonilla, CSIRO’s Data61 25



Scalability

- Marginal likelihood

p(yIX, 8) = / p(yIp(FX, 0)df

can be computed analytically if p(y|X,f) is Gaussian
- ... even then

1 1.
log[p(y[X, 0)] = -5 log |Ky| — iyl Ky 1y + const.

where Ky = K(X,0) isa N x N dense matrix!
- Complexity of exact method is O(N?) time and O(N?) space!
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Kernel Design

- The choice of a kernel is critical for good performance

- This encodes any assumptions on the prior over functions

RBF Matérn Polynomial
’ .
- - W -
B e B e [ S B
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Model Approximations




Bochner’s theorem

- Continuous shift-invariant covariance function

R(x; — X|0) = o2 /p(w@) exp (L(xi - xj)m) dw
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Bochner’s theorem

- Continuous shift-invariant covariance function

R(x; — X|0) = o2 /p(w@) exp (L(xi - xj)m) dew

- Monte Carlo estimate

with
&r ~ p(wl|6)

T

z(X|w) = [cos(x <,u),sin(xT<.u)]T

Rahimi and Recht, NIPS, 2008 - Lazaro-Gredilla et al., JMLR, 2010
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GPs with Random Fourier Features

- Define

o2

¢ = [cos (X2),sin (X2)]

RF

and
f=ow

- GPs become Bayesian linear models with
p(w) =N(0,1)
- Low-rank approximation of K

cov(f) = E[oww o] = 0" ~ K
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GPs with Random Features become Bayesian Linear Models

- Neural Network-like diagram
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Low-Rank Approximations

- Marginal likelihood GP regression:
| [
~3 log |Ky| — iy Ky 'y + const.

- Most GP approximations aim to form a low-rank approximation
to the covariance matrix

Ky = K+ 0?1 = UCV + o
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Low-Rank Approximations

- Woodbury identity for the inverse

(A+Ucv) "=A"T—ATU(CTT+VATIU) VAT

il

o B

- Similar for the log-determinant
- This reduces complexity from O(N3) to O(M3) + O(NM?) with
M < N
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GP Approximations: A Unifying Framework (1)

d— o ———d—
Exact GP. All latent functions are
fully connected.

Quinonero-Candela and Rasmussen (JMLR 2005)
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GP Approximations: A Unifying Framework (1)

N A A A N N A A
Exact GP. All latent functions are Training and test are
fully connected. cond. independent given u

Quinonero-Candela and Rasmussen (JMLR 2005)
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GP Approximations: A Unifying Framework (1

/N\ﬂ\

Wwwwu

Exact GP. All latent functions are Training and test are
fully connected. cond. independent given u

- Joint prior augmented with inducing variables u = {u; j’-V':1
- which are indexed by the inducing inputs Z = {z0)}¥,
- Let p(u) = N(0,Kzz), where K7z = x(Z,Z; 0) then

p(f.. ) = / p(f.. flu)p(u)du

Quinonero-Candela and Rasmussen (JMLR 2005)
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Sparse GP Approximations: A Unifying Framework (2)

We now approximate:

TSﬂetson and Ghahramani, NIPS, 2005
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Sparse GP Approximations: A Unifying Framework (2)

We now approximate:

p(f. ) ~ q(f..F) < / o(f.[u)q(flu)p(u)du

q(flu) is the training conditional and g(f.|u) is the test
conditional.

Most approximation methods can be defined by:

- Different specifications of these conditionals.
- Different Z: Subset of training/test points, new x points
- Learn inducing inputs by (approx.) marginal likelihood
optimizationt
TSﬂetson and Ghahramani, NIPS, 2005
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Sparse GPs and the Nystrom Approximation

- Introduce M pseudo-inputs collected in 7 ...
- ... and corresponding inducing variables u
- Nystrom approximation

K~ KXZ KZ_Z1 KZX
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Sparse GPs and the Nystrom Approximation

- Introduce M pseudo-inputs collected in Z ...
- ... and corresponding inducing variables u
- Nystrom approximations with diagonal correction

K ~ diag(K — Kxz Kz_; Kzx) + Kxz Kz_z1 Kzx

0 Z X
u f
y
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Structured Inputs

- Inputs lie on a regular 1D grid
+ R0, xD) = w(x — x0)

- Kis Toeplitz

Q n T 9
N T o9 o
ST O T 0
o T n Q

- Solving K exactly costs O(N log N) time!

Saatgi, Ph.D. Thesis, 2011
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Structured Inputs

- Inputs lie on a regular 1D grid
. ,{(x(i),x(f)) = r(x() — x0))
- K can be decomposed is Toeplitz
K=K ®...®Ky
where Ky has entries n(x(pi),xg))

- Algebraic operations for K are based on faster ones for each
factor K, in the Kronecker product

Saatgi, Ph.D. Thesis, 2011
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Structured Inducing Points

- Consider a sparse GP:
K = KxzK5; Kzx

- Z on a grid makes the inverse fast (Toeplitz)!
- Can afford M > N
- Still expensive to deal with Kzy ... O(NM?)
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Structured Inducing Points

- Consider a sparse GP:
K =~ KxzK5, Kzx
- Kernel Interpolation (KISS-GP)
Kyxz =~ WKzz
with W a sparse “interpolation” matrix, so that
K ~ Kz K5, K7y ~ WKW T

- All products/inverses are fast even if M > N!

Wilson, NIPS, 2015
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Conclusions

- Bayesian linear regression as a Gaussian process
- Gaussian processes as a prior over functions

- Predictions and hyper-parameter learning

- Challenges

» Non-linear Non-Gaussian likelihoods
» Scalability, O(N?3)

- Inducing variable approximations as a unifying framework

- Structured covariances
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