* [Bayesian Deep Nets and Deep Gaussian Processes](#bayesian-deep-nets-and-deep-gaussian-processes)
* [Inference for Deep Gaussian Processes](#inference-for-deep-gaussian-processes)
* [Convolutional Nets and Gaussian Processes](#convolutional-nets-and-gaussian-processes)
* [Bayesian Convolutional Nets](#bayesian-convolutional-nets)
* [Calibration of Bayesian Convolutional Nets](#calibration-of-bayesian-convolutional-nets)
* [Random Feature Expansions for Shallow and Deep Gaussian Processes](#random-feature-expansions-for-shallow-and-deep-gaussian-processes)
* [Variational Inference](#variational-inference)
* [Variational Inference for Gaussian Process Models](#variational-inference-for-gaussian-process-models)
* [Unsupervised learning with Deep Gaussian Processes](#unsupervised-learning-with-deep-gaussian-processes)
* [Multi-task Learning with Gaussian Processes](#multi-task-learning-with-gaussian-processes)
* [Bayesian Optimization](#bayesian-optimization)
* [Other GP and DGP Models](#other-gp-and-dgp-models)
### Bayesian Deep Nets and Deep Gaussian Processes
-
A. G. de G. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani.
Gaussian process behaviour in wide deep neural networks.
In International Conference on Learning Representations, 2018.
-
K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone.
Random feature expansions for deep Gaussian processes.
In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 884--893, International Convention
Centre, Sydney, Australia, Aug. 2017. PMLR.
-
Y. Gal and Z. Ghahramani.
Dropout As a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning.
In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ICML'16, pages
1050--1059. JMLR.org, 2016.
-
D. K. Duvenaud, O. Rippel, R. P. Adams, and Z. Ghahramani.
Avoiding pathologies in very deep networks.
In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland,
April 22-25, 2014, volume 33 of JMLR Workshop and Conference
Proceedings, pages 202--210. JMLR.org, 2014.
-
R. M. Neal.
Bayesian Learning for Neural Networks (Lecture Notes in
Statistics).
Springer, 1 edition, Aug. 1996.
### Inference for Deep Gaussian Processes
-
H. Salimbeni and M. Deisenroth.
Doubly Stochastic Variational Inference for Deep Gaussian
Processes.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 4588--4599. Curran Associates, Inc., 2017.
-
M. D. Hoffman.
Learning deep latent Gaussian models with Markov chain Monte
Carlo.
In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1510--1519, International Convention
Centre, Sydney, Australia, Aug. 2017. PMLR.
-
M. Havasi, J. M. Hernández-Lobato, and J. J. Murillo-Fuentes.
Inference in Deep Gaussian Processes using Stochastic Gradient
Hamiltonian Monte Carlo.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 7506--7516. Curran Associates, Inc., 2018.
-
K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone.
Random feature expansions for deep Gaussian processes.
In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 884--893, International Convention
Centre, Sydney, Australia, Aug. 2017. PMLR.
-
T. D. Bui, D. Hernández-Lobato, J. M. Hernández-Lobato, Y. Li, and
R. E. Turner.
Deep Gaussian Processes for Regression using Approximate Expectation
Propagation.
In M.-F. Balcan and K. Q. Weinberger, editors, Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48, pages 1472--1481. JMLR.org,
2016.
-
A. C. Damianou and N. D. Lawrence.
Deep Gaussian Processes.
In Proceedings of the Sixteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA,
April 29 - May 1, 2013, volume 31 of JMLR Proceedings, pages
207--215. JMLR.org, 2013.
-
J. Hensman and N. D. Lawrence.
Nested Variational Compression in Deep Gaussian Processes, Dec.
2014.
arxiv:1412.1370.
### Convolutional Nets and Gaussian Processes
-
V. Kumar, V. Singh, P. K. Srijith, and A. Damianou.
Deep Gaussian Processes with Convolutional Kernels, June 2018.
arXiv:1806.01655.
-
M. van der Wilk, C. E. Rasmussen, and J. Hensman.
Convolutional Gaussian Processes.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 2849--2858. Curran Associates, Inc., 2017.
-
J. Bradshaw, Alexander, and Z. Ghahramani.
Adversarial Examples, Uncertainty, and Transfer Testing Robustness
in Gaussian Process Hybrid Deep Networks, July 2017.
arXiv:1707.02476.
-
R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth.
Manifold Gaussian Processes for regression.
In 2016 International Joint Conference on Neural Networks,
IJCNN 2016, Vancouver, BC, Canada, July 24-29, 2016, pages 3338--3345,
2016.
-
A. G. Wilson, Z. Hu, R. R. Salakhutdinov, and E. P. Xing.
Stochastic Variational Deep Kernel Learning.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages
2586--2594. Curran Associates, Inc., 2016.
### Bayesian Convolutional Nets
-
G.-L. Tran, E. V. Bonilla, J. Cunningham, P. Michiardi, and M. Filippone.
Calibrating Deep Convolutional Gaussian Processes.
In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine
Learning Research, volume 89 of Proceedings of Machine Learning
Research, pages 1554--1563. PMLR, 16--18 Apr 2019.
-
F. Laumann, K. Shridhar, and A. L. Maurin.
Bayesian Convolutional Neural Networks, June 2018.
arXiv:1806.05978.
-
A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison.
Deep Convolutional Networks as shallow Gaussian Processes.
In International Conference on Learning Representations, 2019.
-
Y. Gal and Z. Ghahramani.
Bayesian convolutional neural networks with Bernoulli approximate
variational inference.
In 4th International Conference on Learning Representations
(ICLR) workshop track, 2016.
### Calibration of Bayesian Convolutional Nets
-
G.-L. Tran, E. V. Bonilla, J. Cunningham, P. Michiardi, and M. Filippone.
Calibrating Deep Convolutional Gaussian Processes.
In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine
Learning Research, volume 89 of Proceedings of Machine Learning
Research, pages 1554--1563. PMLR, 16--18 Apr 2019.
-
B. Lakshminarayanan, A. Pritzel, and C. Blundell.
Simple and Scalable Predictive Uncertainty Estimation using Deep
Ensembles.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 6402--6413. Curran Associates, Inc., 2017.
-
A. Niculescu-Mizil and R. Caruana.
Predicting Good Probabilities with Supervised Learning.
In Proceedings of the 22Nd International Conference on Machine
Learning, ICML '05, pages 625--632, New York, NY, USA, 2005. ACM.
-
C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger.
On Calibration of Modern Neural Networks.
In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1321--1330, International Convention
Centre, Sydney, Australia, Aug. 2017. PMLR.
### Random Feature Expansions for Shallow and Deep Gaussian Processes
-
K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone.
Random feature expansions for deep Gaussian processes.
In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 884--893, International Convention
Centre, Sydney, Australia, Aug. 2017. PMLR.
-
F. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-Rice, and S. Kumar.
Orthogonal Random Features.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages
1975--1983. Curran Associates, Inc., 2016.
-
Q. Le, T. Sarlos, and A. Smola.
Fastfood - Approximating Kernel Expansions in Loglinear Time.
In 30th International Conference on Machine Learning (ICML),
2013.
-
Y. Gal and Z. Ghahramani.
Dropout As a Bayesian Approximation: Representing Model Uncertainty
in Deep Learning.
In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ICML'16, pages
1050--1059. JMLR.org, 2016.
-
A. Rahimi and B. Recht.
Random Features for Large-Scale Kernel Machines.
In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 1177--1184.
Curran Associates, Inc., 2008.
### Variational Inference
-
D. P. Kingma and M. Welling.
Auto-Encoding Variational Bayes.
In Proceedings of the Second International Conference on
Learning Representations (ICLR 2014), Apr. 2014.
-
A. Graves.
Practical Variational Inference for Neural Networks.
In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and
K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24, pages 2348--2356. Curran Associates, Inc., 2011.
### Variational Inference for Gaussian Process Models
-
T. V. Nguyen and E. V. Bonilla.
Automated variational inference for Gaussian process models.
In Advances in Neural Information Processing Systems. 2014.
-
J. Hensman, N. Fusi, and N. D. Lawrence.
Gaussian processes for big data.
In Uncertainty in Artificial Intelligence, 2013.
-
A. Dezfouli and E. V. Bonilla.
Scalable inference for Gaussian process models with black-box
likelihoods.
In Advances in Neural Information Processing Systems. 2015.
-
E. V. Bonilla, K. Krauth, and A. Dezfouli.
Generic Inference in Latent Gaussian Process Models.
arXiv e-prints, page arXiv:1609.00577, Sep 2016.
-
M. Titsias.
Variational learning of inducing variables in sparse Gaussian
processes.
In Artificial Intelligence and Statistics, 2009.
-
K. Krauth, E. V. Bonilla, K. Cutajar, and M. Filippone.
AutoGP: Exploring the capabilities and limitations of Gaussian
process models.
In Uncertainty in Artificial Intelligence, 2017.
### Unsupervised learning with Deep Gaussian Processes
-
R. Domingues, P. Michiardi, J. Zouaoui, and M. Filippone.
Deep Gaussian process autoencoders for novelty detection.
Machine Learning, 107(8-10):1363--1383, 2018.
-
Z. Dai, A. Damianou, J. González, and N. Lawrence.
Variational Auto-encoded Deep Gaussian Processes, Feb. 2016.
-
N. Lawrence.
Probabilistic non-linear principal component analysis with Gaussian
process latent variable models.
Journal of Machine Learning Research, 6:1783--1816, 2005.
-
K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović.
Style-based inverse kinematics.
In ACM SIGGRAPH 2004 Papers, SIGGRAPH '04, pages 522--531, New
York, NY, USA, 2004. ACM.
### Multi-task Learning with Gaussian Processes
-
K. M. A. Chai, C. K. Williams, S. Klanke, and S. Vijayakumar.
Multi-task Gaussian process learning of robot inverse dynamics.
In Advances in Neural Processing Systems, pages 265--272, 2008.
-
E. V. Bonilla, K. M. A. Chai, and C. K. I. Williams.
Multi-task Gaussian process prediction.
In Advances in Neural Processing Systems, 2008.
-
M. A. Álvarez and N. D. Lawrence.
Computationally efficient convolved multiple output Gaussian
processes.
Journal of Machine Learning Research, 12(5):1459--1500, 2011.
-
A. G. Wilson, D. A. Knowles, and Z. Ghahramani.
Gaussian process regression networks.
In International Conference on Machine Learning, 2012.
-
P. Boyle.
Gaussian Processes for Regression and Optimisation.
PhD thesis, Victoria University of Wellington, 2007.
### Bayesian Optimization
-
D. R. Jones.
A Taxonomy of Global Optimization Methods Based on Response
Surfaces.
Journal of Global Optimization, 21(4):345--383, 2001.
-
J. Snoek, H. Larochelle, and R. P. Adams.
Practical Bayesian optimization of machine learning algorithms.
In Advances in neural information processing systems, pages
2951--2959, 2012.
-
W. Chu and Z. Ghahramani.
Preference learning with Gaussian processes.
In Proceedings of the 22nd international conference on Machine
learning, pages 137--144. ACM, 2005.
-
K. Swersky, J. Snoek, and R. P. Adams.
Multi-task Bayesian optimization.
In Advances in neural information processing systems, pages
2004--2012, 2013.
### Other GP and DGP Models
-
R. Domingues, P. Michiardi, J. Zouaoui, and M. Filippone.
Deep Gaussian process autoencoders for novelty detection.
Machine Learning, 107(8-10):1363--1383, 2018.
-
M. van der Wilk, C. E. Rasmussen, and J. Hensman.
Convolutional Gaussian Processes.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 2849--2858. Curran Associates, Inc., 2017.
-
M. Lorenzi, M. Filippone, G. B. Frisoni, D. C. Alexander, and S. Ourselin.
Probabilistic disease progression modeling to characterize diagnostic
uncertainty: staging and prediction in Alzheimer's disease.
NeuroImage, 2017.
to appear.
-
Z. Dai, A. Damianou, J. González, and N. Lawrence.
Variational Auto-encoded Deep Gaussian Processes, Feb. 2016.
-
K. Blomqvist, S. Kaski, and M. Heinonen.
Deep convolutional Gaussian processes.
arXiv preprint arXiv:1810.03052, 2018.
-
P. Galliani, A. Dezfouli, E. Bonilla, and N. Quadrianto.
Gray-box inference for structured Gaussian process models.
In A. Singh and J. Zhu, editors, Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research, pages 353--361,
Fort Lauderdale, FL, USA, 20--22 Apr 2017. PMLR.
-
S. Linderman and R. Adams.
Discovering latent network structure in point process data.
In International Conference on Machine Learning, pages
1413--1421, 2014.
-
A. Dezfouli, E. Bonilla, and R. Nock.
Variational network inference: Strong and stable with concrete
support.
In J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 1204--1213, Stockholmsmässan, Stockholm
Sweden, 10--15 Jul 2018. PMLR.
-
M. Kuss and C. E. Rasmussen.
Gaussian processes in reinforcement learning.
In Advances in neural information processing systems, pages
751--758, 2004.
-
Y. Engel, S. Mannor, and R. Meir.
Reinforcement learning with Gaussian processes.
In Proceedings of the 22nd international conference on Machine
learning, pages 201--208. ACM, 2005.
-
M. Deisenroth and C. E. Rasmussen.
Pilco: A model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on machine
learning (ICML-11), pages 465--472, 2011.
-
J. Martin and B. Englot.
Recursive sparse pseudo-input Gaussian process sarsa.
arXiv preprint arXiv:1811.07201, 2018.
-
R. P. Adams, I. Murray, and D. J. MacKay.
Tractable nonparametric Bayesian inference in poisson processes
with Gaussian process intensities.
In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 9--16. ACM, 2009.
-
C. Lloyd, T. Gunter, M. A. Osborne, and S. J. Roberts.
Variational Inference for Gaussian Process Modulated Poisson
Processes.
In International Conference on Machine Learning, 2015.
-
S. John and J. Hensman.
Large-scale cox process inference using variational fourier features.
International Conference on Machine Learning, 2018.
-
V. Aglietti, T. Damoulas, and E. Bonilla.
Efficient inference in multi-task cox process models.
Artificial Intelligence and Statistics, 2018.