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Multi-task Learning



Data Fusion and Multi-task Learning (1)

• Sharing information across tasks/problems/modalities

• Very little data on test task

• Can model dependencies a priori

• Correlated GP prior over latent functions
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Data Fusion and Multi-task Learning (2)

Multi-task GP (Bonilla et al, NeurIPS, 2008)

• Cov(f`(x), fm(x′)) = Kf
`mκ(x, x′)

• K can be estimated from data

• Kronecker-product covariances

I ‘Efficient’ computation

• Robot inverse dynamics (Chai et

al, NeurIPS, 2009)

Generalisations and other settings:

• Convolution formalism (Alvarez and Lawrence, JMLR, 2011)

• GP regression networks (Wilson et al, ICML, 2012)

• Many more ...
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The Gaussian Process Latent

Variable Model (GPLVM)



Non-linear Dimensionality Reduction with GPs

The Gaussian Process Latent Variable Model (GPLVM;

Lawrence, NeurIPS, 2004):

• Probabilistic non-linear

dimensionality reduction

• Use independent GPs for

each observed dimension

• Estimate latent

projections of the data via

maximum likelihood

x̃1 x̃2 x̃3

x1 x2 x3 ∙ xD∙ ∙
𝒢𝒫1 𝒢𝒫D
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Modelling of Human Poses with GPLVMs (Grochow et al, SIGGRAPH 2004)

Style-Based Inverse Kinematics: Given a set of constraints,

produce the most likely pose

• High dimensional data derived from pose information

I joint angles, vertical orientation, velocity and accelerations

• GPLVM used to learn

low-dimensional trajectories

• GPLVM predictive distribution

used in cost function for finding

new poses with constraints

Fig. and cool videos at

http://grail.cs.washington.edu/projects/styleik/
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Bayesian Optimisation



Probabilistic Numerics: Bayesian Optimisation (1)

Optimisation of black-box functions:

• Do not know their

implementation

• Costly to evaluate

• Use GPs as surrogate models

Vanilla BO iterates:

1 Get a few samples from true function

2 Fit a GP to the samples

3 Use GP predictive distribution along with acquisition function

to suggest new sample locations

What are sensible acquisition functions?
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Bayesian Optimisation (2)

A taxonomy of algorithms proposed by D. R. Jones (2001)

• µ(x?), σ2(x?): pred. mean, variance

• I def
= f (x?)− fbest: pred. improvement

• Expected improvement:

EI(x?) =

∫ ∞
0
Ip(I)dI

I Simple ‘analytical form’
I Exploration-exploitation

Fig. from Boyle (2007)

Main idea: Sample x? so as to maximize the EI
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Bayesian Optimisation (3)

Many cool applications of BO and probabilistic numerics:

• Optimisation of ML algorithms (Snoek et al, NeurIPS, 2012)

• Preference learning (Chu and Gahramani, ICML 2005; Brochu

et al, NeurIPS, 2007; Bonilla et al, NeurIPS, 2010)

• Multi-task BO (Swersky et al, NeurIPS, 2013)

• Bayesian Quadrature

See http://probabilistic-numerics.org/ and references

therein
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Deep Gaussian Processes



The Deep Learning Revolution

• Large representational power

• Big data learning through stochastic optimisation

• Exploit GPU and distributed computing

• Automatic differentiation

• Mature development of regularization (e.g., dropout)

• Application-specific representations (e.g., convolutional)
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Is There Any Hope for Gaussian Process Models?

Can we exploit what made Deep Learning successful for

practical and scalable learning of Gaussian processes?
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Deep Gaussian Processes

• Composition of Processes

(f ◦ g)(x)??

Damianou and Lawrence, AISTATS, 2013 – Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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Teaser — Modern GPs: Flexibility and Scalability

• Composition of processes: Deep Gaussian Processes

F(1) 

Y 

θ(1) X 

F(2) 

θ(2) 

Damianou and Lawrence, AISTATS, 2013 – Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017 13



Learning Deep Gaussian Processes

• Inference requires calculating integrals of this kind:

p(Y|X,θ) =

∫
p
(

Y|F(Nh),θ(Nh)
)
×

p
(

F(Nh)|F(Nh−1),θ(Nh−1)
)
× . . .×

p
(

F(1)|X,θ(0)
)
dF(Nh) . . . dF(1)

• Extremely challenging!
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Inference for DGPs

• Inducing-variable approximations

I VI+Titsias

• Damianou and Lawrence (AISTATS, 2013)

• Hensman and Lawrence, (arXiv, 2014)

• Salimbeni and Deisenroth, (NeurIPS, 2017)

I EP+FITC: Bui et al. (ICML, 2016)
I MCMC+Titsias

• Havasi et al (arXiv, 2018)

• VI+Random feature-based approximations

I Gal and Ghahramani (ICML 2016)
I Cutajar et al. (ICML 2017)
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Example: DGPs with Random Features are Bayesian DNNs

Recall RF approximations to GPs (part II-a). Then we have:

θ(0) θ(1)

Φ(0)X F(1) Φ(1) F(2) Y

Ω(0) W(0) Ω(1) W(1)
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Stochastic Variational Inference

• Define Ψ = (Ω(0), . . . ,W(0), . . .)

• Lower bound for log [p(Y|X,θ)]

Eq(Ψ) (log [p (Y|X,Ψ,θ)])−DKL [q(Ψ)‖p (Ψ|θ)] ,

where q(Ψ) approximates p(Ψ|Y,θ).

• DKL computable analytically if q and p are Gaussian!

Optimize the lower bound wrt the parameters of q(Ψ)
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Stochastic Variational Inference

• Assume that the likelihood factorizes

p(Y|X,Ψ,θ) =
∏
k

p(yk |xk ,Ψ,θ)

• Doubly stochastic unbiased estimate of the expectation term

I Mini-batch

Eq(Ψ) (log [p (Y|X,Ψ,θ)]) ≈ n

m

∑
k∈Im

Eq(Ψ) (log [p(yk |xk ,Ψ,θ)])

I Monte Carlo

Eq(Ψ) (log [p(yk |xk ,Ψ,θ)]) ≈ 1

NMC

NMC∑
r=1

log[p(yk |xk , Ψ̃r ,θ)]

with Ψ̃r ∼ q(Ψ).
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Stochastic Variational Inference

• Reparameterization trick

(W̃
(l)
r )ij = σ

(l)
ij ε

(l)
rij + µ

(l)
ij ,

with ε
(l)
rij ∼ N (0, 1)

• . . . same for Ω

• Variational parameters

µ
(l)
ij , (σ

2)
(l)
ij . . .

. . . and the ones for Ω

• Optimization with automatic differentiation in TensorFlow

Kingma and Welling, ICLR, 2014
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Other Interesting GP/DGP-based

Models



Other Interesting GP/DGP-Based Models (1)

Convolutional GPs and DGPs

• Wilson et al (NeuriPS, 2016)

• van der Wilk et al (NeurIPS, 2017)

• Bradshaw et al (Arxiv, 2017)

• Tran et al (AISTATS, 2019)

Structured Prediction

• Galliani et al (AISTATS, 2017)

Network-structure discovery

• Linderman and Adams (ICML,

2014)

• Dezfouli, Bonilla and Nock

(ICML, 2018)

CNN MCD CNN+GP(RF)
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Other Interesting GP/DGP-Based Models (2)

Autoencoders

• Dai et al (ICLR, 2015); Domingues et al (Mach. Learn., 2018)

Constrained dynamics

• Lorenzi and Filippone, (ICML), 2018

Reinforcement Learning

• Rasmussen & Kauss (NIPS, 2004); Engel et al (ICML, 2005)

• Deisenroth and Rasmussen (ICML, 2011)

• Martin and Englot (Arxiv, 2018)

Doubly stochastic Poisson processes

• Adams et al (ICML, 2009); Lloyd et al (ICML, 2015)

• John and Hensman (ICML, 2018)

• Aglietti, Damoulas and Bonilla (AISTATS, 2019)
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Conclusions

Applications and extensions of GP models by using more complex

priors (e.g. coupled, compositions) and likelihoods

• Multi-task GPs by using correlated priors

• Dimensionality reduction via the GPLVM

• Probabilistic numerics, e.g. Bayesian optimisation

• Deep GPs

• Convolutional GPs

• Other settings such as RL, structured prediction, Poisson

point processes
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CSIRO’s Data61: Looking for the Next Research Stars in ML

Interested in working at the cutting edge of research in ML

and AI? contact

Richard Nock: richard.nock@data61.csiro.au

or

Edwin Bonilla: edwin.bonilla@data61.csiro.au
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