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Bayesian Modeling



Learning from Data — Function Estimation

e Take these two examples
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e We are interested in estimating a function f(x) from data

e Most problems in Machine Learning can be cast this way!



What do Bayesian Models Have to Offer?

e Regression example
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What do Bayesian Models Have to Offer?

e Classification example
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Gaussian Processes



Linear Models

e Implement a linear combination of basis functions

with



Probabilistic Interpretation of Loss Minimization

o X = (x1,...,xpn) "
. Yy =y, yn)’
e Weights : w = (wy,...,wp)"
Quadratic Loss p(y|X, w) o exp(—Loss)

1

e Minimization of a loss function

e ... equivalent as maximizing likelihood p(y|X, w)



Bayesian Inference

. X = (xg,...,xn) "
O : :()/17"'7)/N)T
o Weights : w = (wy,...,wp)'
p(w) p(wly, X
p(y|X, w)p(w)

(W‘Ya ) -
/ p(y[X, w)p(w)dw



Bayesian Linear Models in Action

e Today's posterior is tomorrow's prior
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Bayesian Linear Models in Action

e Today's posterior is tomorrow's prior




Bayesian Linear Regression

e Modeling observations as noisy realizations of a linear
combination of the features:

e ® = ®(X) has entries

p1(x1) ... ep(x1)

991(;<N) SOD(.XN)
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Bayesian Linear Regression

e Modeling observations as noisy realizations of a linear
combination of the features:

e ® = ®(X) has entries
p1(x1) ... ep(x1)

801(;<N) SOD(.XN)

e Gaussian prior over model parameters:

p(w) = N(0,S)
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Bayesian Linear Regression

e Bayes rule:
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Bayesian Linear Regression

e Bayes rule:

__ pyIX,w)p(w)  _ ply[X, w)p(w)
J p(y|X, w)p(w)dw p(yIX)

e Posterior density: p(w|X,y)

p(w|X,y)

» Distribution over parameters after observing data
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Bayesian Linear Regression

e Bayes rule:

__ pyIX,w)p(w)  _ ply[X, w)p(w)
J p(y|X, w)p(w)dw p(yIX)

Posterior density: p(w|X,y)

p(w|X,y)

» Distribution over parameters after observing data
Conditional Likelihood : p(y|X, w)

» Measure of “fitness”

Prior density: p(w)
» Anything we know about parameters before we see any data
Marginal likelihood: p(y|X)

» It is a normalization constant — ensures [ p(w|X,y) dw = 1.
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Bayesian Linear Regression

e Posterior must be Gaussian (Proof in the Appendix)
p(W’ ’ 70—2) = N(H, Z)

e Covariance:

e Mean:

e Predictions — with a similar tedious exercise...

p(y+|X,y, %, 0°) = N(x] p, 0% + x, Tx,)
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Gaussian Processes

e Linear models require specifying a set of basis functions

» Polynomials, Trigonometric, ...?7
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Gaussian Processes

e Linear models require specifying a set of basis functions

» Polynomials, Trigonometric, ...?7

e Gaussian Processes work implicitly with a possibly infinite set
of basis functions!
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Bayesian Linear Regression as a Kernel Machine

e Predictions can be expressed exclusively in terms of scalar

products as follows
k(xiy %)) = P(xi) (%))

e This allows us to work with either k(-,-) or ¥(+)

e Why is this useful??

14



Bayesian Linear Regression as a Kernel Machine

e Working with 1(+) costs O(D?) storage, O(D3) time
e Working with k(-,-) costs O(N?) storage, O(N3) time

15



Bayesian Linear Regression as a Kernel Machine

Proof sketch - more in the Appendix

e To show that Bayesian Linear Regression can be formulated
through scalar products only, we need Woodbury identity:

(A+Uucv)t=A"1-Atuct+vatu)ytvat
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Bayesian Linear Regression as a Kernel Machine

Proof sketch - more in the Appendix

e Woodbury identity:
(A+Uucv)yt=A1t_Atyct+vatu)ytvat

e \We can rewrite:

1 =il
r = <2¢T¢+s—1>
g
=il
= $-507 (Y1+0507) oS
e Weset A=S, U=VT =0T and C= LI
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Kernels

e We can pick k(-,-) so that ¢(-) is infinite dimensional!

e |t is possible to show that for

T
g =0 <—HXI 2XJH >

there exists a corresponding () that is infinite dimensional!
(Proof in the Appendix)

e There are other kernels satisfying this property

18



Gaussian Processes as Infinitely-Wide Shallow Neural Nets

Take W) ~ N(0, a;l)
Central Limit Theorem implies that f

is Gaussian

f has zero-mean
cov(f) = Epy,wan[@XWOYWH WOT eo(Xw©)T]

Neal, LNS, 1996
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Gaussian Processes as Infinitely-Wide Shallow Neural Nets

Take W) ~ N(0, a;l)
Central Limit Theorem implies that f

is Gaussian

f has zero-mean
cov(f) = a1 10 [@(XW )@ (X W () T]

Some choices of ® lead to analytic expression of known

kernels (RBF, Matérn, arc-cosine, Brownian motion, ...)

Neal, LNS, 1996
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Gaussian Processes for Regression

e Latent function:

with ¢(+) possibly infinite dimensional!
e The choice of ¢(-) and the prior over w induce a distribution
over functions

Definition
f is distributed according to a Gaussian process iff for any subset
{x1,...,%xn} the evaluation of f is jointly Gaussian

f(x) ~ GP(u(x), k(x,x)) then
f~N(p K)

21



Gaussian Processes for Regression

e Bayes rule:

22



Gaussian Processes for Regression

e Bayes rule:

__ PUyIA)p(FIX)  _ p(yIf)p(FIX)
J p(y[f)p(f|X)df p(yIX)

e Conditional Likelihood : p(y|f) = N(y|0,5°1)

p(fIX,y)
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Gaussian Processes for Regression

e Bayes rule:

_ pUINR(EIX)  _ pyIfp(fIX)
TpOINR(EX)dF ~ p(yIX)

e Conditional Likelihood : p(y|f) = N(y|0,5°1)

e Prior over latent variables: Implied by the prior over w

p(fIX,y)

p(f|X) = N(F|0,K)
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Gaussian Processes for Regression

Bayes rule:

_ pUINR(EIX)  _ pyIfp(fIX)
TpOINR(EX)dF ~ p(yIX)

Conditional Likelihood : p(y|f) = N (y|0, 5°1)

e Prior over latent variables: Implied by the prior over w

p(fIX,y)

p(f|X) = N(F|0,K)

Marginal likelihood: p(y|X) = N (y|0,K + 1)
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Optimization of Gaussian Process parameters

e The kernel has parameters that have to be tuned
k(xi,x;) = aexp(—p||x; — XJH2)

... and there is also the noise parameter 2.
e Define 6 = (a, 3, 0?)

e How should we tune them?
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Optimization of Gaussian Process parameters

e Define Ky = K + a2l

e Maximize the logarithm of the marginal likelihood
p(v]X, 0) = N(0,Ky)

that is | q
~5 log |[Ky| — 5 TKy_1 + const.
e Derivatives can be useful for gradient-based optimization

dlog[p(y|X, 0)]
90);
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Optimization of Gaussian Process parameters

e Log-marginal likelihood

1
Iog|Ky\ TK 1y + const.

e Derivatives can be useful for gradient-based optimization:

dlog[p(y[X, 0)] _ Iy <K 10Ky > 1 TKylaKyK 1

00, 2 Y 00; 00;
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Challenges




Challenges

e Non-Gaussian Likelihoods?
e Scalability?

o Kernel design?

26



Marginal likelihood of GP models - non-Gaussian case

e Marginal likelihood

p(y|X,8) = / p(y[F)p(f]X, 0)df

can only be computed if p(y|f) is Gaussian

e What if p(y|f) is not Gaussian?
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Scalability

e Marginal likelihood

p(y|X,0) = / p(y[F)p(F|X, 0)df

can only be computed if p(y|X, f) is Gaussian

e ... even then
log[p(y|X, 0)] = Iog Kyl — fy 'K,y + const.
where Ky = K(X,0) is a N x N dense matrix!

e Complexity of exact method is O(N3) time and O(N?) space!

28



Kernel Design

e The choice of a kernel is critical for good performance

e This encodes any assumptions on the prior over functions

RBF Matérn Polynomial
>0 >0 J | >0
|
< En | () -
: : W :
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Appendix




Kernels

e For simplicity consider one dimensional inputs x;, x;

e Expand the Gaussian kernel k(xj, x;) as

x: — x:)2 2 x2
exp(—%):exp —?’ exp —7] exp (xixj)

e Focusing on the last term and applying the Taylor expansion of the exp(-)
function

(xix)? N (xixp)? N (xixp)*

exp (X,‘Xj) =1+ (X,‘Xj) —+ 21 30 a0
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Kernels

e Define the infinite dimensional mapping

e It is easy to verify that

s = s
k(xi,xj) = exp (*%) = (i) "p(x)

31



Bayesian Linear Regression - Finding posterior parameters

e Ignoring normalizing constants, the posterior is:

R

> 1 _
p(w|X,y, %) exp{—g(w—,u)TZ 1(w—/,L)}
1
= exp{—E(WTZ’IW—2WTZ’IN+NTZ*IM)}

1
x exp {fg(w—rzflw — 2wT271u)}
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Bayesian Linear Regression - Finding posterior parameters

e Ignoring non-w terms, the prior multiplied by the likelihood is:

p(ylw, X, %)
o exp{—ziz( —ow)T( —tbw)}exp{—%wTS_lw}

1 1 2
X expy—= wl | —¢Td+SHw——w'ol
2 o2 o2

e Posterior (from previous slide):

X exp {—%(szflw — 2WT271N)}
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Bayesian Linear Regression - Finding posterior parameters

e Equate individual terms on each side.

e Covariance:

1
wizlw = w' |:—,)¢T¢+Sfl}w
=
1 =il
r = <7¢T¢+s—1>
>
e Mean:
Ty—1 2 ToT
2w X = —w o

p o= =Io’
)
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Bayesian Linear Regression as a Kernel Machine

e To show that Bayesian Linear Regression can be formulated through scalar
products only, we need Woodbury identity:

(A+ucv)yt=A"1 A lyict+valu)ytvat

e Intuitively:

-
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Bayesian Linear Regression as a Kernel Machine

e Woodbury identity:
(A+ucv)yt=Aa1_aAlyict+vatuy)ytvat

e We can rewrite:

1 —1

r = <7¢T¢ + s*)
g
=il
= S—soT (aﬂl 1 ¢s¢T) oS

o Weset A=S, U=VT =&T, and C= LI
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Bayesian Linear Regression as a Kernel Machine

e Mean and variance of the predictions:
p(,\/*| ) 7X*702) :N(¢I“7 (72 + ¢IZ¢>*)
e Rewrite the variance:

o+ PlEe, =

D

. R =il
2 4+ ¢lSp, —plS®T (ml 4 ¢S¢T) ®S¢h,

... continued
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Bayesian Linear Regression as a Kernel Machine

e Mean and variance of the predictions:
P(y+lX, ¥, %0, 0%) = N (@) 1, 0% + ] E,)
e Rewrite the variance:

g =il
o+ ¢ISh, — ¢SO (a71+0S0T)  0Sp, =

2

o> 4 ke — k] (1K) ke
e Where the mapping defining the kernel is

P(x) = S/2¢(x)

and

Koo k(%x, xa) = 1 (x) T4 (x)
(ke)i = K(xe, i) = P(xe) T9(x;)
(K)jj k(xi,x;) = ¥(x;) T (x;)
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Bayesian Linear Regression as a Kernel Machine

e Mean and variance of the predictions:
Py|X,y,xe,0%) = N(®)] p,0° + ¢, E¢,)
e Rewrite the mean:
T G S
b = ;4)* o
1 -1
= 5ol <s —soT’ <(72| + 4>s¢T) ¢s> ol

—1
= Llolser <|—(02|+¢5¢T) ¢s¢T>
2

=i
1 o oSO oS’
= S¢S0 (I— <|+ = -

... continued
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Bayesian Linear Regression as a Kernel Machine

e Define H = Osﬁi

e The term in the parenthesis

becomes
<I —(1+H)? H) =l—H 14!

e Using Woodbury (A, U,V =1land C =H™1!)

I—-H 14+ T=(04+H)?
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Bayesian Linear Regression as a Kernel Machine

e Substituting into the expression of the predictive mean

oTu - LoTser [1_ (14 95% T oseT
*p' - (72 * (Tz ffz

et (1 2507 -
2% T

— ¢IseT (n2l+¢S¢T)7l
= Kk (1+K)!

e All definitions as in the case of the variance

P(X) = SYV2p(X)
(ke)i = k(xe,x7) = (xa) T(x7)
(K)j k(xi,x;) = P(x;) T (x;)
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