Modern Gaussian Processes: Scalable Inference and Novel Applications

(Part I-b) Introduction to Gaussian Processes

Edwin V. Bonilla and Maurizio Filippone

CSIRO's Data61, Sydney, Australia and EURECOM, Sophia Antipolis, France

July 14th, 2019

Outline

- 1 Bayesian Modeling
- 2 Gaussian Processes
 - Bayesian Linear Models
 - Gaussian Processes
 - Connections with Deep Neural Nets
 - **Optimizing Kernel Parameters**
- 3 Challenges

Bayesian Modeling

Learning from Data — Function Estimation

• Take these two examples

- We are interested in estimating a function f(x) from data
- Most problems in Machine Learning can be cast this way!

What do Bayesian Models Have to Offer?

• Regression example

What do Bayesian Models Have to Offer?

• Classification example

Gaussian Processes

Linear Models

• Implement a linear combination of basis functions

$$\mathbf{f}(\mathbf{x}) = \mathbf{w}^{\top} \boldsymbol{\varphi} \left(\mathbf{x} \right)$$

with

$$\varphi\left(\mathbf{x}\right) = \left(\varphi_1(\mathbf{x}), \dots, \varphi_D(\mathbf{x})\right)^{\top}$$

Probabilistic Interpretation of Loss Minimization

- Inputs: $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\top}$
- Labels: $\mathbf{y} = (y_1, \dots, y_N)^{\top}$
- Weights: $\mathbf{w} = (w_1, \dots, w_D)^{\top}$

- Minimization of a loss function
- ... equivalent as maximizing likelihood p(y|X, w)

Bayesian Inference

- Inputs: $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^{\top}$
- Labels: $\mathbf{y} = (y_1, \dots, y_N)^{\top}$
- Weights: $\mathbf{w} = (w_1, \dots, w_D)^{\top}$

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

 Modeling observations as noisy realizations of a linear combination of the features:

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\mathbf{\Phi}\mathbf{w}, \sigma^2\mathbf{I})$$

• $\Phi = \Phi(X)$ has entries

$$\mathbf{\Phi} = \left[\begin{array}{ccc} \varphi_1(\mathbf{x}_1) & \dots & \varphi_D(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ \varphi_1(\mathbf{x}_N) & \dots & \varphi_D(\mathbf{x}_N) \end{array} \right]$$

 Modeling observations as noisy realizations of a linear combination of the features:

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) = \mathcal{N}(\mathbf{\Phi}\mathbf{w}, \sigma^2\mathbf{I})$$

• $\Phi = \Phi(X)$ has entries

$$\mathbf{\Phi} = \left[\begin{array}{ccc} \varphi_1(\mathbf{x}_1) & \dots & \varphi_D(\mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ \varphi_1(\mathbf{x}_N) & \dots & \varphi_D(\mathbf{x}_N) \end{array} \right]$$

• Gaussian prior over model parameters:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{S})$$

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Posterior density: $p(\mathbf{w}|\mathbf{X}, \mathbf{y})$
 - Distribution over parameters after observing data

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Posterior density: $p(\mathbf{w}|\mathbf{X}, \mathbf{y})$
 - ► Distribution over parameters *after* observing data
- Conditional Likelihood : p(y|X, w)
 - ► Measure of "fitness"

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Posterior density: $p(\mathbf{w}|\mathbf{X}, \mathbf{y})$
 - Distribution over parameters after observing data
- Conditional Likelihood : p(y|X, w)
 - ► Measure of "fitness"
- Prior density: $p(\mathbf{w})$
 - ► Anything we know about parameters *before* we see any data

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})d\mathbf{w}} = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- Posterior density: $p(\mathbf{w}|\mathbf{X}, \mathbf{y})$
 - ► Distribution over parameters *after* observing data
- Conditional Likelihood : p(y|X, w)
 - ► Measure of "fitness"
- Prior density: $p(\mathbf{w})$
 - ► Anything we know about parameters *before* we see any data
- Marginal likelihood: p(y|X)
 - ▶ It is a normalization constant ensures $\int p(\mathbf{w}|\mathbf{X},\mathbf{y}) \ d\mathbf{w} = 1$.

Posterior must be Gaussian (Proof in the Appendix)

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) = \mathcal{N}(\boldsymbol{\mu}, \mathbf{\Sigma})$$

• Covariance:

$$\mathbf{\Sigma} = \left(rac{1}{\sigma^2}\mathbf{\Phi}^{ op}\mathbf{\Phi} + \mathbf{S}^{-1}
ight)^{-1}$$

• Mean:

$$\mu = rac{1}{\sigma^2} \mathbf{\Sigma} \mathbf{\Phi}^ op \mathbf{y}$$

• Predictions – with a similar tedious exercise...

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\mathbf{x}_*^{\top}\boldsymbol{\mu},\sigma^2 + \mathbf{x}_*^{\top}\mathbf{\Sigma}\mathbf{x}_*)$$

Gaussian Processes

- Linear models require specifying a set of basis functions
 - ► Polynomials, Trigonometric, ...??

Gaussian Processes

- Linear models require specifying a set of basis functions
 - ► Polynomials, Trigonometric, ...??
- Gaussian Processes work implicitly with a possibly infinite set of basis functions!

 Predictions can be expressed exclusively in terms of scalar products as follows

$$k(\mathbf{x}_i, \mathbf{x}_j) = \psi(\mathbf{x}_i)^{\top} \psi(\mathbf{x}_j)$$

- This allows us to work with either $k(\cdot,\cdot)$ or $\psi(\cdot)$
- Why is this useful??

- Working with $\psi(\cdot)$ costs $O(D^2)$ storage, $O(D^3)$ time
- Working with $k(\cdot,\cdot)$ costs $O(N^2)$ storage, $O(N^3)$ time

Proof sketch - more in the Appendix

 To show that Bayesian Linear Regression can be formulated through scalar products only, we need Woodbury identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Proof sketch - more in the Appendix

• Woodbury identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

• We can rewrite:

$$\Sigma = \left(\frac{1}{\sigma^2} \mathbf{\Phi}^\top \mathbf{\Phi} + \mathbf{S}^{-1}\right)^{-1}$$
$$= \mathbf{S} - \mathbf{S} \mathbf{\Phi}^\top \left(\sigma^2 \mathbf{I} + \mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^\top\right)^{-1} \mathbf{\Phi} \mathbf{S}$$

ullet We set $A=\mathbf{S}$, $U=V^{ op}=\mathbf{\Phi}^{ op}$, and $C=rac{1}{\sigma^2}\mathbf{I}$

Kernels

- We can pick $k(\cdot,\cdot)$ so that $\psi(\cdot)$ is infinite dimensional!
- It is possible to show that for

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2}\right)$$

there exists a corresponding $\psi(\cdot)$ that is infinite dimensional! (Proof in the Appendix)

There are other kernels satisfying this property

Gaussian Processes as Infinitely-Wide Shallow Neural Nets

- Take $W^{(i)} \sim \mathcal{N}(\mathbf{0}, \alpha_i I)$
- Central Limit Theorem implies that f is Gaussian

- f has zero-mean
- $\bullet \ \operatorname{cov}(\mathbf{f}) = \mathbb{E}_{p(W^{(0)}, W^{(1)})}[\boldsymbol{\Phi}(\mathbf{X}W^{(0)})W^{(1)}W^{(1)\top}\boldsymbol{\Phi}(\mathbf{X}W^{(0)})^{\top}]$

Neal, LNS, 1996

Gaussian Processes as Infinitely-Wide Shallow Neural Nets

- Take $W^{(i)} \sim \mathcal{N}(\mathbf{0}, \alpha_i I)$
- Central Limit Theorem implies that f
 is Gaussian

- f has zero-mean
- $\operatorname{cov}(\mathbf{f}) = \alpha_1 \mathbb{E}_{p(W^{(0)})} [\Phi(\mathbf{X}W^{(0)}) \Phi(\mathbf{X}W^{(0)})^{\top}]$
- Some choices of Φ lead to analytic expression of known kernels (RBF, Matérn, arc-cosine, Brownian motion, ...)

Neal, LNS, 1996

• Latent function:

$$\mathbf{f} = \mathbf{w}^ op oldsymbol{arphi}(\mathbf{x})$$

with $\varphi(\cdot)$ possibly infinite dimensional!

• The choice of $\varphi(\cdot)$ and the prior over \mathbf{w} induce a distribution over functions

Definition

f is distributed according to a Gaussian process iff for any subset $\{x_1, \dots, x_N\}$ the evaluation of f is jointly Gaussian

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'))$$
 then $\mathbf{f} \sim \mathcal{N}(oldsymbol{\mu}, \mathbf{K})$

• Bayes rule:

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})d\mathbf{f}} = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{p(\mathbf{y}|\mathbf{X})}$$

• Bayes rule:

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})d\mathbf{f}} = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{p(\mathbf{y}|\mathbf{X})}$$

• Conditional Likelihood : $p(y|f) = \mathcal{N}(y|0, \sigma^2I)$

Bayes rule:

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})d\mathbf{f}} = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{p(\mathbf{y}|\mathbf{X})}$$

- Conditional Likelihood : $p(y|f) = \mathcal{N}(y|0, \sigma^2I)$
- Prior over latent variables: Implied by the prior over w

$$p(\mathbf{f}|\mathbf{X}) = \mathcal{N}(\mathbf{f}|\mathbf{0}, \mathbf{K})$$

Bayes rule:

$$p(\mathbf{f}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})d\mathbf{f}} = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X})}{p(\mathbf{y}|\mathbf{X})}$$

- Conditional Likelihood : $p(y|f) = \mathcal{N}(y|0, \sigma^2I)$
- Prior over latent variables: Implied by the prior over w

$$p(\mathbf{f}|\mathbf{X}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

• Marginal likelihood: $p(y|X) = \mathcal{N}(y|0, K + \sigma^2 I)$

Optimization of Gaussian Process parameters

The kernel has parameters that have to be tuned

$$k(\mathbf{x}_i, \mathbf{x}_j) = \alpha \exp(-\beta \|\mathbf{x}_i - \mathbf{x}_j\|^2)$$

... and there is also the noise parameter σ^2 .

- Define $\theta = (\alpha, \beta, \sigma^2)$
- How should we tune them?

Optimization of Gaussian Process parameters

- Define $\mathbf{K_y} = \mathbf{K} + \sigma^2 \mathbf{I}$
- Maximize the logarithm of the marginal likelihood

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_{\mathbf{y}})$$

that is

$$-\frac{1}{2}\log|\mathbf{K}_{\mathbf{y}}| - \frac{1}{2}\mathbf{y}^{\top}\mathbf{K}_{\mathbf{y}}^{-1}\mathbf{y} + \mathrm{const.}$$

Derivatives can be useful for gradient-based optimization

$$\frac{\partial \log[p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})]}{\partial \boldsymbol{\theta}_i}$$

Optimization of Gaussian Process parameters

• Log-marginal likelihood

$$-\frac{1}{2}\log|\textbf{K}_{\textbf{y}}|-\frac{1}{2}\textbf{y}^{\top}\textbf{K}_{\textbf{y}}^{-1}\textbf{y}+\mathrm{const.}$$

Derivatives can be useful for gradient-based optimization:

$$\frac{\partial \log[p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})]}{\partial \boldsymbol{\theta}_i} = -\frac{1}{2} \mathrm{Tr} \left(\mathbf{K}_{\mathbf{y}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{y}}}{\partial \boldsymbol{\theta}_i} \right) + \frac{1}{2} \mathbf{y}^{\top} \mathbf{K}_{\mathbf{y}}^{-1} \frac{\partial \mathbf{K}_{\mathbf{y}}}{\partial \boldsymbol{\theta}_i} \mathbf{K}_{\mathbf{y}}^{-1} \mathbf{y}$$

Challenges

Challenges

- Non-Gaussian Likelihoods?
- Scalability?
- Kernel design?

Marginal likelihood of GP models - non-Gaussian case

Marginal likelihood

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta})d\mathbf{f}$$

can only be computed if p(y|f) is Gaussian

• What if p(y|f) is **not** Gaussian?

Scalability

Marginal likelihood

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\mathbf{X}, \boldsymbol{\theta})d\mathbf{f}$$

can only be computed if p(y|X, f) is Gaussian

• ... even then

$$\log[p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})] = -\frac{1}{2}\log|\mathbf{K}_{\mathbf{y}}| - \frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{K}_{\mathbf{y}}^{-1}\mathbf{y} + \mathrm{const.}$$

where $\mathbf{K}_{\mathbf{y}} = \mathbf{K}(\mathbf{X}, \boldsymbol{\theta})$ is a $N \times N$ dense matrix!

• Complexity of exact method is $\mathcal{O}(N^3)$ time and $\mathcal{O}(N^2)$ space!

Kernel Design

- The choice of a kernel is critical for good performance
- This encodes any assumptions on the prior over functions

Appendix

Kernels

- For simplicity consider one dimensional inputs x_i , x_j
- Expand the Gaussian kernel $k(x_i, x_j)$ as

$$\exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{2}\right) = \exp\left(-\frac{\mathbf{x}_i^2}{2}\right) \exp\left(-\frac{\mathbf{x}_j^2}{2}\right) \exp\left(\mathbf{x}_i \mathbf{x}_j\right)$$

 \bullet Focusing on the last term and applying the Taylor expansion of the $\exp(\cdot)$ function

$$\exp\left(\mathbf{x}_{i}\mathbf{x}_{j}\right) = 1 + \left(\mathbf{x}_{i}\mathbf{x}_{j}\right) + \frac{\left(\mathbf{x}_{i}\mathbf{x}_{j}\right)^{2}}{2!} + \frac{\left(\mathbf{x}_{i}\mathbf{x}_{j}\right)^{3}}{3!} + \frac{\left(\mathbf{x}_{i}\mathbf{x}_{j}\right)^{4}}{4!} + \dots$$

Kernels

• Define the infinite dimensional mapping

$$\psi(\mathbf{x}) = \exp\left(-\frac{\mathbf{x}^2}{2}\right) \left(1, \mathbf{x}, \frac{\mathbf{x}^2}{\sqrt{2!}}, \frac{\mathbf{x}^3}{\sqrt{3!}}, \frac{\mathbf{x}^4}{\sqrt{4!}}, \ldots\right)^\top$$

• It is easy to verify that

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{2}\right) = \psi(\mathbf{x}_i)^{\top} \psi(\mathbf{x}_j)$$

Bayesian Linear Regression - Finding posterior parameters

• Ignoring normalizing constants, the posterior is:

$$\begin{split} \rho(\mathbf{w}|\mathbf{X},\mathbf{y},\sigma^2) & \propto & \exp\left\{-\frac{1}{2}(\mathbf{w}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{w}-\boldsymbol{\mu})\right\} \\ & = & \exp\left\{-\frac{1}{2}(\mathbf{w}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{w}-2\mathbf{w}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}+\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu})\right\} \\ & \propto & \exp\left\{-\frac{1}{2}(\mathbf{w}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{w}-2\mathbf{w}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu})\right\} \end{split}$$

Bayesian Linear Regression - Finding posterior parameters

• Ignoring non-w terms, the prior multiplied by the likelihood is:

$$\begin{split} & \rho(\mathbf{y}|\mathbf{w}, \mathbf{X}, \sigma^2) \\ \propto & \exp\left\{-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{\Phi}\mathbf{w})^\top(\mathbf{y} - \mathbf{\Phi}\mathbf{w})\right\} \exp\left\{-\frac{1}{2}\mathbf{w}^\top \mathbf{S}^{-1}\mathbf{w}\right\} \\ \propto & \exp\left\{-\frac{1}{2}\left(\mathbf{w}^\top \left[\frac{1}{\sigma^2}\mathbf{\Phi}^\top \mathbf{\Phi} + \mathbf{S}^{-1}\right]\mathbf{w} - \frac{2}{\sigma^2}\mathbf{w}^\top \mathbf{\Phi}^\top \mathbf{y}\right)\right\} \end{split}$$

Posterior (from previous slide):

$$\propto \exp\left\{-rac{1}{2}(\mathbf{w}^{ op}\mathbf{\Sigma}^{-1}\mathbf{w}-2\mathbf{w}^{ op}\mathbf{\Sigma}^{-1}oldsymbol{\mu})
ight\}$$

Bayesian Linear Regression - Finding posterior parameters

- Equate individual terms on each side.
- Covariance:

$$\mathbf{w}^{\top} \mathbf{\Sigma}^{-1} \mathbf{w} = \mathbf{w}^{\top} \left[\frac{1}{\sigma^{2}} \mathbf{\Phi}^{\top} \mathbf{\Phi} + \mathbf{S}^{-1} \right] \mathbf{w}$$
$$\mathbf{\Sigma} = \left(\frac{1}{\sigma^{2}} \mathbf{\Phi}^{\top} \mathbf{\Phi} + \mathbf{S}^{-1} \right)^{-1}$$

• Mean:

$$2\mathbf{w}^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu} = \frac{2}{\sigma^{2}} \mathbf{w}^{\top} \mathbf{\Phi}^{\top} \mathbf{y}$$
$$\boldsymbol{\mu} = \frac{1}{\sigma^{2}} \mathbf{\Sigma} \mathbf{\Phi}^{\top} \mathbf{y}$$

 To show that Bayesian Linear Regression can be formulated through scalar products only, we need Woodbury identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

Intuitively:

Woodbury identity:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

• We can rewrite:

$$\Sigma = \left(\frac{1}{\sigma^2} \mathbf{\Phi}^\top \mathbf{\Phi} + \mathbf{S}^{-1}\right)^{-1}$$
$$= \mathbf{S} - \mathbf{S} \mathbf{\Phi}^\top \left(\frac{\sigma^2 \mathbf{I}}{\mathbf{I}} + \mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^\top\right)^{-1} \mathbf{\Phi} \mathbf{S}$$

• We set $A = \mathbf{S}$, $U = V^{\top} = \mathbf{\Phi}^{\top}$, and $C = \frac{1}{\sigma^2} \mathbf{I}$

• Mean and variance of the predictions:

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\phi_*^{\top}\boldsymbol{\mu},\sigma^2 + \phi_*^{\top}\boldsymbol{\Sigma}\phi_*)$$

Rewrite the variance.

$$\begin{aligned} & \boldsymbol{\sigma^2} & + & \boldsymbol{\phi}_*^\top \boldsymbol{\Sigma} \boldsymbol{\phi}_* = \\ & \boldsymbol{\sigma^2} & + & \boldsymbol{\phi}_*^\top \boldsymbol{S} \boldsymbol{\phi}_* - \boldsymbol{\phi}_*^\top \boldsymbol{S} \boldsymbol{\Phi}^\top \left(\boldsymbol{\sigma^2} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{S} \boldsymbol{\Phi}^\top \right)^{-1} \boldsymbol{\Phi} \boldsymbol{S} \boldsymbol{\phi}_* \end{aligned}$$

... continued

• Mean and variance of the predictions:

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\phi_*^{\top}\boldsymbol{\mu},\sigma^2 + \phi_*^{\top}\boldsymbol{\Sigma}\phi_*)$$

Rewrite the variance:

$$\begin{split} & \boldsymbol{\sigma}^{2} & + & \boldsymbol{\phi}_{*}^{\top} \mathbf{S} \boldsymbol{\phi}_{*} - \boldsymbol{\phi}_{*}^{\top} \mathbf{S} \boldsymbol{\Phi}^{\top} \left(\boldsymbol{\sigma}^{2} \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^{\top} \right)^{-1} \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\phi}_{*} = \\ & \boldsymbol{\sigma}^{2} & + & k_{**} - \mathbf{k}_{*}^{\top} \left(\boldsymbol{\sigma}^{2} \mathbf{I} + \mathbf{K} \right)^{-1} \mathbf{k}_{*} \end{split}$$

• Where the mapping defining the kernel is

$$\psi(\mathbf{x}) = \mathbf{S}^{1/2}\phi(\mathbf{x})$$

and

$$k_{**} = k(\mathbf{x}_{*}, \mathbf{x}_{*}) = \psi(\mathbf{x}_{*})^{\top} \psi(\mathbf{x}_{*})$$

$$(\mathbf{k}_{*})_{i} = k(\mathbf{x}_{*}, \mathbf{x}_{i}) = \psi(\mathbf{x}_{*})^{\top} \psi(\mathbf{x}_{i})$$

$$(\mathbf{K})_{ij} = k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \psi(\mathbf{x}_{i})^{\top} \psi(\mathbf{x}_{j})$$

Mean and variance of the predictions:

$$p(\mathbf{y}_*|\mathbf{X},\mathbf{y},\mathbf{x}_*,\sigma^2) = \mathcal{N}(\phi_*^{\top}\boldsymbol{\mu},\sigma^2 + \phi_*^{\top}\mathbf{\Sigma}\phi_*)$$

• Rewrite the mean:

$$\begin{split} \boldsymbol{\phi}_*^\top \boldsymbol{\mu} &= & \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \boldsymbol{\Sigma} \boldsymbol{\Phi}^\top \mathbf{y} \\ &= & \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \left(\mathbf{S} - \mathbf{S} \boldsymbol{\Phi}^\top \left(\boldsymbol{\sigma}^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top \right)^{-1} \boldsymbol{\Phi} \mathbf{S} \right) \boldsymbol{\Phi}^\top \mathbf{y} \\ &= & \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \mathbf{S} \boldsymbol{\Phi}^\top \left(\mathbf{I} - \left(\boldsymbol{\sigma}^2 \mathbf{I} + \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top \right)^{-1} \boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top \right) \mathbf{y} \\ &= & \frac{1}{\sigma^2} \boldsymbol{\phi}_*^\top \mathbf{S} \boldsymbol{\Phi}^\top \left(\mathbf{I} - \left(\mathbf{I} + \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top}{\sigma^2} \right)^{-1} \frac{\boldsymbol{\Phi} \mathbf{S} \boldsymbol{\Phi}^\top}{\sigma^2} \right) \mathbf{y} \end{split}$$

... continued

- Define $\mathbf{H} = \frac{\mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^{\top}}{\sigma^2}$
- The term in the parenthesis

$$\left(\mathbf{I} - \left(\mathbf{I} + \frac{\mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^\top}{\sigma^2}\right)^{-1} \frac{\mathbf{\Phi} \mathbf{S} \mathbf{\Phi}^\top}{\sigma^2}\right)$$

becomes

$$(I - (I + H)^{-1} H) = I - (H^{-1} + I)^{-1}$$

• Using Woodbury $(A, U, V = I \text{ and } C = H^{-1})$

$$I - (H^{-1} + I)^{-1} = (I + H)^{-1}$$

Substituting into the expression of the predictive mean

$$\begin{split} \phi_*^\top \mu &= \frac{1}{\sigma^2} \phi_*^\top \mathsf{S} \Phi^\top \left(\mathsf{I} - \left(\mathsf{I} + \frac{\Phi \mathsf{S} \Phi^\top}{\sigma^2} \right)^{-1} \frac{\Phi \mathsf{S} \Phi^\top}{\sigma^2} \right) \mathsf{y} \\ &= \frac{1}{\sigma^2} \phi_*^\top \mathsf{S} \Phi^\top \left(\mathsf{I} + \frac{\Phi \mathsf{S} \Phi^\top}{\sigma^2} \right)^{-1} \mathsf{y} \\ &= \phi_*^\top \mathsf{S} \Phi^\top \left(\sigma^2 \mathsf{I} + \Phi \mathsf{S} \Phi^\top \right)^{-1} \mathsf{y} \\ &= \mathsf{k}_*^\top \left(\sigma^2 \mathsf{I} + \mathsf{K} \right)^{-1} \mathsf{y} \end{split}$$

All definitions as in the case of the variance

$$\psi(\mathbf{X}) = \mathbf{S}^{1/2}\phi(\mathbf{X})$$

$$(\mathbf{k}_*)_i = k(\mathbf{x}_*, \mathbf{x}_i) = \psi(\mathbf{x}_*)^{\top}\psi(\mathbf{x}_i)$$

$$(\mathbf{K})_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \psi(\mathbf{x}_i)^{\top}\psi(\mathbf{x}_j)$$