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Bayesian Modeling



Learning from Data — Function Estimation

• Take these two examples
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• We are interested in estimating a function f(x) from data

• Most problems in Machine Learning can be cast this way!
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What do Bayesian Models Have to Offer?

• Regression example
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What do Bayesian Models Have to Offer?

• Classification example
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Gaussian Processes



Linear Models

• Implement a linear combination of basis functions

f(x) = w>ϕ (x)

with

ϕ (x) = (ϕ1(x), . . . , ϕD(x))>
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Probabilistic Interpretation of Loss Minimization

• Inputs : X = (x1, . . . , xN)>

• Labels : y = (y1, . . . , yN)>

• Weights : w = (w1, . . . ,wD)>

Quadratic Loss p(y|X,w) ∝ exp(−Loss)
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• Minimization of a loss function

• . . . equivalent as maximizing likelihood p(y|X,w)
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Bayesian Inference

• Inputs : X = (x1, . . . , xN)>

• Labels : y = (y1, . . . , yN)>

• Weights : w = (w1, . . . ,wD)>

p(w) p(w|y,X)

p(w|y,X) =
p(y|X,w)p(w)∫
p(y|X,w)p(w)dw
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Bayesian Linear Models in Action

• Today’s posterior is tomorrow’s prior
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Bayesian Linear Models in Action

• Today’s posterior is tomorrow’s prior
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Bayesian Linear Regression

• Modeling observations as noisy realizations of a linear

combination of the features:

p(y|w,X, σ2) = N (Φw, σ2I)

• Φ = Φ(X) has entries

Φ =

 ϕ1(x1) . . . ϕD(x1)
...

. . .
...

ϕ1(xN) . . . ϕD(xN)



• Gaussian prior over model parameters:

p(w) = N (0,S)

10
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Bayesian Linear Regression

• Bayes rule:

p(w|X, y) =
p(y|X,w)p(w)∫
p(y|X,w)p(w)dw

=
p(y|X,w)p(w)

p(y|X)

• Posterior density: p(w|X, y)

I Distribution over parameters after observing data

• Conditional Likelihood : p(y|X,w)

I Measure of “fitness”

• Prior density: p(w)

I Anything we know about parameters before we see any data

• Marginal likelihood: p(y|X)

I It is a normalization constant – ensures
∫
p(w|X, y) dw = 1.
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• Posterior density: p(w|X, y)

I Distribution over parameters after observing data

• Conditional Likelihood : p(y|X,w)

I Measure of “fitness”

• Prior density: p(w)

I Anything we know about parameters before we see any data

• Marginal likelihood: p(y|X)

I It is a normalization constant – ensures
∫
p(w|X, y) dw = 1.

11



Bayesian Linear Regression

• Posterior must be Gaussian (Proof in the Appendix)

p(w|X, y, σ2) = N (µ,Σ)

• Covariance:

Σ =

(
1

σ2
Φ>Φ + S−1

)−1

• Mean:

µ =
1

σ2
ΣΦ>y

• Predictions – with a similar tedious exercise...

p(y∗|X, y, x∗, σ2) = N (x>∗ µ, σ
2 + x>∗ Σx∗)

12



Gaussian Processes

• Linear models require specifying a set of basis functions

I Polynomials, Trigonometric, . . .??

• Gaussian Processes work implicitly with a possibly infinite set

of basis functions!
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of basis functions!
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Bayesian Linear Regression as a Kernel Machine

• Predictions can be expressed exclusively in terms of scalar

products as follows

k(xi , xj) = ψ(xi )
>ψ(xj)

• This allows us to work with either k(·, ·) or ψ(·)
• Why is this useful??

14



Bayesian Linear Regression as a Kernel Machine

• Working with ψ(·) costs O(D2) storage, O(D3) time

• Working with k(·, ·) costs O(N2) storage, O(N3) time

15



Bayesian Linear Regression as a Kernel Machine

Proof sketch - more in the Appendix

• To show that Bayesian Linear Regression can be formulated

through scalar products only, we need Woodbury identity:

(A + UCV )−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

-1

-1 -1 -1 -1
-1

-1

16



Bayesian Linear Regression as a Kernel Machine

Proof sketch - more in the Appendix

• Woodbury identity:

(A + UCV )−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

• We can rewrite:

Σ =

(
1

σ2
Φ>Φ + S−1

)−1

= S− SΦ>
(
σ2I + ΦSΦ>

)−1
ΦS

• We set A = S, U = V> = Φ>, and C = 1
σ2 I

17



Kernels

• We can pick k(·, ·) so that ψ(·) is infinite dimensional!

• It is possible to show that for

k(xi , xj) = exp

(
−
‖xi − xj‖2

2

)
there exists a corresponding ψ(·) that is infinite dimensional!

(Proof in the Appendix)

• There are other kernels satisfying this property

18



Gaussian Processes as Infinitely-Wide Shallow Neural Nets

• Take W (i) ∼ N (0, αi I )

• Central Limit Theorem implies that f

is Gaussian

...

...

ΦX F

W (0) W (1)

• f has zero-mean

• cov(f) = Ep(W (0),W (1))[Φ(XW (0))W (1)W (1)>Φ(XW (0))>]

Neal, LNS, 1996
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Gaussian Processes as Infinitely-Wide Shallow Neural Nets

• Take W (i) ∼ N (0, αi I )

• Central Limit Theorem implies that f

is Gaussian

...

...

ΦX F

W (0) W (1)

• f has zero-mean

• cov(f) = α1Ep(W (0))[Φ(XW (0))Φ(XW (0))>]

• Some choices of Φ lead to analytic expression of known

kernels (RBF, Matérn, arc-cosine, Brownian motion, . . .)

Neal, LNS, 1996
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Gaussian Processes for Regression

• Latent function:

f = w>ϕ(x)

with ϕ(·) possibly infinite dimensional!

• The choice of ϕ(·) and the prior over w induce a distribution

over functions

Definition

f is distributed according to a Gaussian process iff for any subset

{x1, . . . , xN} the evaluation of f is jointly Gaussian

f (x) ∼ GP(µ(x), κ(x, x′)) then

f ∼ N (µ,K)

21



Gaussian Processes for Regression

• Bayes rule:

p(f|X, y) =
p(y|f)p(f|X)∫
p(y|f)p(f|X)df

=
p(y|f)p(f|X)

p(y|X)

• Conditional Likelihood : p(y|f) = N (y|0, σ2I)

• Prior over latent variables: Implied by the prior over w

p(f|X) = N (f|0,K)

• Marginal likelihood: p(y|X) = N (y|0,K + σ2I)
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Optimization of Gaussian Process parameters

• The kernel has parameters that have to be tuned

k(xi , xj) = α exp(−β‖xi − xj‖2)

. . . and there is also the noise parameter σ2.

• Define θ = (α, β, σ2)

• How should we tune them?

23



Optimization of Gaussian Process parameters

• Define Ky = K + σ2I

• Maximize the logarithm of the marginal likelihood

p(y|X,θ) = N (0,Ky)

that is

−1

2
log |Ky| −

1

2
y>K−1

y y + const.

• Derivatives can be useful for gradient-based optimization

∂ log[p(y|X,θ)]

∂θi
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Optimization of Gaussian Process parameters

• Log-marginal likelihood

−1

2
log |Ky| −

1

2
y>K−1

y y + const.

• Derivatives can be useful for gradient-based optimization:

∂ log[p(y|X,θ)]

∂θi
= −1

2
Tr

(
K−1

y
∂Ky

∂θi

)
+

1

2
y>K−1

y
∂Ky

∂θi
K−1

y y

25
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Challenges

• Non-Gaussian Likelihoods?

• Scalability?

• Kernel design?

26



Marginal likelihood of GP models - non-Gaussian case

• Marginal likelihood

p(y|X,θ) =

∫
p(y|f)p(f|X,θ)df

can only be computed if p(y|f) is Gaussian

• What if p(y|f) is not Gaussian?

27



Scalability

• Marginal likelihood

p(y|X,θ) =

∫
p(y|f)p(f|X,θ)df

can only be computed if p(y|X, f) is Gaussian

• ... even then

log[p(y|X,θ)] = −1

2
log |Ky| −

1

2
yTK−1

y y + const.

where Ky = K(X,θ) is a N × N dense matrix!

• Complexity of exact method is O(N3) time and O(N2) space!
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Kernel Design

• The choice of a kernel is critical for good performance

• This encodes any assumptions on the prior over functions

RBF Matérn Polynomial
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Appendix



Kernels

• For simplicity consider one dimensional inputs x i , x j

• Expand the Gaussian kernel k(x i , x j ) as

exp

(
−

(x i − x j )
2

2

)
= exp

(
−
x2
i

2

)
exp

(
−
x2
j

2

)
exp

(
x ix j

)
• Focusing on the last term and applying the Taylor expansion of the exp(·)

function

exp
(
x ix j

)
= 1 +

(
x ix j

)
+

(
x ix j

)2

2!
+

(
x ix j

)3

3!
+

(
x ix j

)4

4!
+ . . .
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Kernels

• Define the infinite dimensional mapping

ψ(x) = exp

(
−
x2

2

)(
1, x ,

x2

√
2!
,
x3

√
3!
,
x4

√
4!
, . . .

)>
• It is easy to verify that

k(x i , x j ) = exp

(
−

(x i − x j )
2

2

)
= ψ(x i )

>ψ(x j )
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Bayesian Linear Regression - Finding posterior parameters

• Ignoring normalizing constants, the posterior is:

p(w|X, y, σ2) ∝ exp

{
−

1

2
(w − µ)>Σ−1(w − µ)

}
= exp

{
−

1

2
(w>Σ−1w − 2w>Σ−1µ+ µ>Σ−1µ)

}
∝ exp

{
−

1

2
(w>Σ−1w − 2w>Σ−1µ)

}
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Bayesian Linear Regression - Finding posterior parameters

• Ignoring non-w terms, the prior multiplied by the likelihood is:

p(y|w,X, σ2)

∝ exp

{
−

1

2σ2
(y −Φw)>(y −Φw)

}
exp

{
−

1

2
w>S−1w

}
∝ exp

{
−

1

2

(
w>

[
1

σ2
Φ>Φ + S−1

]
w −

2

σ2
w>Φ>y

)}

• Posterior (from previous slide):

∝ exp

{
−

1

2
(w>Σ−1w − 2w>Σ−1µ)

}
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Bayesian Linear Regression - Finding posterior parameters

• Equate individual terms on each side.

• Covariance:

w>Σ−1w = w>
[

1

σ2
Φ>Φ + S−1

]
w

Σ =

(
1

σ2
Φ>Φ + S−1

)−1

• Mean:

2w>Σ−1µ =
2

σ2
w>Φ>y

µ =
1

σ2
ΣΦ>y
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Bayesian Linear Regression as a Kernel Machine

• To show that Bayesian Linear Regression can be formulated through scalar

products only, we need Woodbury identity:

(A + UCV )−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

• Intuitively:

-1

-1 -1 -1 -1
-1

-1
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Bayesian Linear Regression as a Kernel Machine

• Woodbury identity:

(A + UCV )−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

• We can rewrite:

Σ =

(
1

σ2
Φ>Φ + S−1

)−1

= S− SΦ>
(
σ2I + ΦSΦ>

)−1
ΦS

• We set A = S, U = V> = Φ>, and C = 1
σ2 I
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Bayesian Linear Regression as a Kernel Machine

• Mean and variance of the predictions:

p(y∗|X, y, x∗, σ2) = N (φ>∗ µ, σ
2 + φ>∗ Σφ∗)

• Rewrite the variance:

σ2 + φ>∗ Σφ∗ =

σ2 + φ>∗ Sφ∗ − φ>∗ SΦ>
(
σ2I + ΦSΦ>

)−1
ΦSφ∗

. . . continued
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Bayesian Linear Regression as a Kernel Machine

• Mean and variance of the predictions:

p(y∗|X, y, x∗, σ2) = N (φ>∗ µ, σ
2 + φ>∗ Σφ∗)

• Rewrite the variance:

σ2 + φ>∗ Sφ∗ − φ>∗ SΦ>
(
σ2I + ΦSΦ>

)−1
ΦSφ∗ =

σ2 + k∗∗ − k>∗
(
σ2I + K

)−1
k∗

• Where the mapping defining the kernel is

ψ(x) = S1/2φ(x)

and

k∗∗ = k(x∗, x∗) = ψ(x∗)
>ψ(x∗)

(k∗)i = k(x∗, xi ) = ψ(x∗)
>ψ(xi )

(K)ij = k(xi , xj ) = ψ(xi )
>ψ(xj )
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Bayesian Linear Regression as a Kernel Machine

• Mean and variance of the predictions:

p(y∗|X, y, x∗, σ2) = N (φ>∗ µ, σ
2 + φ>∗ Σφ∗)

• Rewrite the mean:

φ>∗ µ =
1

σ2
φ>∗ ΣΦ>y

=
1

σ2
φ>∗

(
S− SΦ>

(
σ2I + ΦSΦ>

)−1
ΦS

)
Φ>y

=
1

σ2
φ>∗ SΦ>

(
I−
(
σ2I + ΦSΦ>

)−1
ΦSΦ>

)
y

=
1

σ2
φ>∗ SΦ>

I−
(

I +
ΦSΦ>

σ2

)−1
ΦSΦ>

σ2

 y

. . . continued
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Bayesian Linear Regression as a Kernel Machine

• Define H = ΦSΦ>

σ2

• The term in the parenthesis

I−
(

I +
ΦSΦ>

σ2

)−1
ΦSΦ>

σ2


becomes (

I− (I + H)−1 H
)

= I− (H−1 + I)−1

• Using Woodbury (A,U,V = I and C = H−1)

I− (H−1 + I)−1 = (I + H)−1
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Bayesian Linear Regression as a Kernel Machine

• Substituting into the expression of the predictive mean

φ>∗ µ =
1

σ2
φ>∗ SΦ>

I−
(

I +
ΦSΦ>

σ2

)−1
ΦSΦ>

σ2

 y

=
1

σ2
φ>∗ SΦ>

(
I +

ΦSΦ>

σ2

)−1

y

= φ>∗ SΦ>
(
σ2I + ΦSΦ>

)−1
y

= k>∗
(
σ2I + K

)−1
y

• All definitions as in the case of the variance

ψ(X) = S1/2φ(X)

(k∗)i = k(x∗, xi ) = ψ(x∗)
>ψ(xi )

(K)ij = k(xi , xj ) = ψ(xi )
>ψ(xj )
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