Modern Gaussian Processes: Scalable Inference and Novel Applications

(Part II-b) Approximate Inference

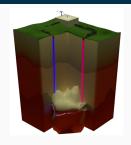
Edwin V. Bonilla and Maurizio Filippone

CSIRO's Data61, Sydney, Australia and EURECOM, Sophia Antipolis, France
July 14th, 2019

Challenges in Bayesian Reasoning with Gaussian Process Priors

 $p(\mathbf{f})$: prior over geology and rock properties

 $p(\mathbf{y} | \mathbf{f})$: observation model's likelihood



\$20 Million geothermal well

Geol. surveys and explorations

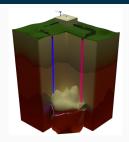
Challenges in Bayesian Reasoning with Gaussian Process Priors

 $p(\mathbf{f})$: prior over geology and rock properties

 $p(\mathbf{y} | \mathbf{f})$: observation model's likelihood

 $p(\mathbf{f}|\mathbf{y})$: posterior geological model:

$$p(\mathbf{f} | \mathbf{y}, \boldsymbol{\theta}) = \underbrace{\frac{p(\mathbf{f} | \boldsymbol{\theta})p(\mathbf{y} | \mathbf{f})}{\int p(\mathbf{f} | \boldsymbol{\theta})p(\mathbf{y} | \mathbf{f})d\mathbf{f}}_{\text{hard bit}}}_{\text{hard bit}}$$



\$20 Million geothermal well

Geol. surveys and explorations

Challenges in Bayesian Reasoning with Gaussian Process Priors

 $p(\mathbf{f})$: prior over geology and rock properties

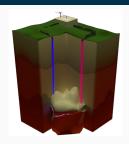
 $p(\mathbf{y} | \mathbf{f})$: observation model's likelihood

 $p(\mathbf{f}|\mathbf{y})$: posterior geological model:

$$p(\mathbf{f} \mid \mathbf{y}, \boldsymbol{\theta}) = \underbrace{\frac{p(\mathbf{f} \mid \boldsymbol{\theta})p(\mathbf{y} \mid \mathbf{f})}{\int p(\mathbf{f} \mid \boldsymbol{\theta})p(\mathbf{y} \mid \mathbf{f})d\mathbf{f}}_{\text{hard bit}}}_{\text{hard bit}}$$

Challenges:

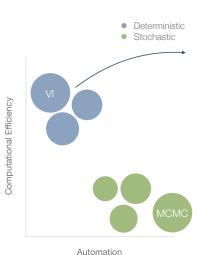
- Non-linear likelihood models
- ► Large datasets



\$20 Million geothermal well

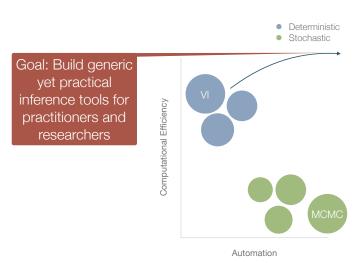
Automated Probabilistic Reasoning

• Approximate inference



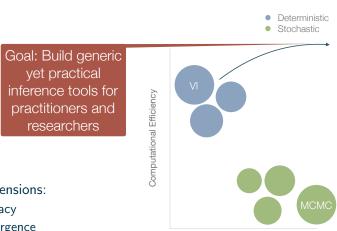
Automated Probabilistic Reasoning

• Approximate inference



Automated Probabilistic Reasoning

Approximate inference



• Other dimensions:

- Accuracy
- Convergence

Outline

1 Latent Gaussian Process Models (LGPMs)

2 Variational Inference

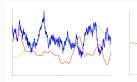
3 Scalability through Inducing Variables and Stochastic Variational Inference (SVI)

Supervised learning $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N$

 Factorised GP priors over Q latent functions:

$$f_j(\mathbf{x}) \sim \mathcal{GP}(0, \kappa_j(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}))$$

$$ho(\mathbf{F} \,|\, \mathbf{X}, oldsymbol{ heta}) = \prod_{j=1}^Q \mathcal{N}(\mathbf{F}_{\cdot j}; \mathbf{0}, \mathbf{K}_j)$$



Supervised learning $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N$

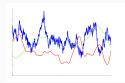
 Factorised GP priors over Q latent functions:

$$f_j(\mathbf{x}) \sim \mathcal{GP}(0, \kappa_j(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}))$$

$$p(\mathbf{F} | \mathbf{X}, \boldsymbol{\theta}) = \prod_{j=1}^{Q} \mathcal{N}(\mathbf{F}_{.j}; \mathbf{0}, \mathbf{K}_{j})$$

Factorised likelihood over observations

$$p(\mathbf{Y} \,|\, \mathbf{X}, \mathbf{F}, \phi) = \prod_{n=1}^N p(\mathbf{Y}_{n\cdot} \,|\, \mathbf{F}_{n\cdot}, \phi)$$



Supervised learning $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N$

 Factorised GP priors over Q latent functions:

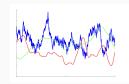
$$f_j(\mathbf{x}) \sim \mathcal{GP}(0, \kappa_j(\mathbf{x}, \mathbf{x}'; \boldsymbol{\theta}))$$

$$p(\mathbf{F} | \mathbf{X}, \boldsymbol{\theta}) = \prod_{j=1}^{Q} \mathcal{N}(\mathbf{F}_{.j}; \mathbf{0}, \mathbf{K}_{j})$$

Factorised likelihood over observations

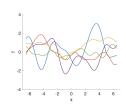
$$p(\mathbf{Y} | \mathbf{X}, \mathbf{F}, \phi) = \prod_{n=1}^{N} p(\mathbf{Y}_{n \cdot} | \mathbf{F}_{n \cdot}, \phi)$$

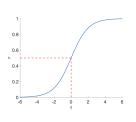
What can we model within this framework?



Examples of LGPMs (1)

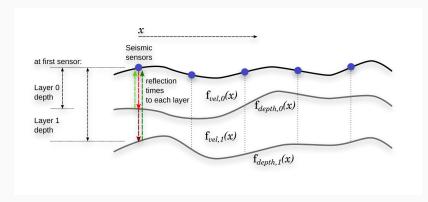
- Multi-output regression
- Multi-class classification
 - ightharpoonup P = Q classes
 - ► softmax likelihood





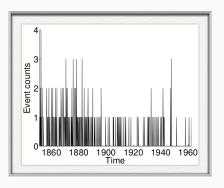
Examples of LGPMs (2)

• Inversion problems



Examples of LGPMs (3)

• Log Gaussian Cox processes (LGCPs)



Inference in LGPMs

We only require access to 'black-box' likelihoods. *How can we carry out inference in these general models?*

Variational Inference

Recall our posterior estimation problem:

$$\underbrace{p(\mathbf{F} \mid \mathbf{Y})}_{\text{posterior}} = \underbrace{\frac{1}{p(\mathbf{Y})}}_{\substack{\text{marginal} \\ \text{likelihood}}} \underbrace{p(\mathbf{F})}_{\substack{\text{prior} \\ \text{conditional} \\ \text{likelihood}}} \underbrace{p(\mathbf{Y} \mid \mathbf{F})}_{\substack{\text{conditional} \\ \text{likelihood}}}$$

Recall our posterior estimation problem:

$$\underbrace{p(\mathbf{F} \mid \mathbf{Y})}_{\text{posterior}} = \underbrace{\frac{1}{p(\mathbf{Y})}}_{\substack{\text{marginal} \\ \text{likelihood}}} \underbrace{p(\mathbf{F})}_{\substack{\text{prior} \\ \text{conditiona} \\ \text{likelihood}}} \underbrace{p(\mathbf{Y} \mid \mathbf{F})}_{\substack{\text{prior} \\ \text{likelihood}}}$$

• Estimating $p(\mathbf{Y}) = \int p(\mathbf{F})p(\mathbf{Y} \,|\, \mathbf{F})d\mathbf{F}$ is hard

Recall our posterior estimation problem:

$$\underbrace{p(\mathbf{F} \mid \mathbf{Y})}_{\text{posterior}} = \underbrace{\frac{1}{p(\mathbf{Y})}}_{\substack{\text{marginal} \\ \text{likelihood}}} \underbrace{p(\mathbf{F})}_{\substack{\text{prior} \\ \text{conditional} \\ \text{likelihood}}} \underbrace{p(\mathbf{Y} \mid \mathbf{F})}_{\substack{\text{conditional} \\ \text{likelihood}}}$$

- Estimating $p(\mathbf{Y}) = \int p(\mathbf{F})p(\mathbf{Y} \,|\, \mathbf{F})d\mathbf{F}$ is hard
- Instead, approximate $q(\mathbf{F} | \lambda) \approx p(\mathbf{F} | \mathbf{Y})$ to minimize:

$$\mathrm{KL}\left[q(\mathsf{F}\,|\,\boldsymbol{\lambda})\parallel p(\mathsf{F}\,|\,\boldsymbol{\mathsf{Y}})\right] \stackrel{\mathrm{def}}{=} \mathbb{E}_{q(\mathsf{F}\,|\,\boldsymbol{\lambda})}\log\frac{q(\mathsf{F}\,|\,\boldsymbol{\lambda})}{p(\mathsf{F}\,|\,\boldsymbol{\mathsf{Y}})}$$

Recall our posterior estimation problem:

$$\underbrace{p(\mathbf{F} \mid \mathbf{Y})}_{\text{posterior}} = \underbrace{\frac{1}{p(\mathbf{Y})}}_{\substack{\text{marginal} \\ \text{likelihood}}} \underbrace{p(\mathbf{F})}_{\substack{\text{prior} \\ \text{conditional} \\ \text{likelihood}}} \underbrace{p(\mathbf{Y} \mid \mathbf{F})}_{\substack{\text{conditional} \\ \text{likelihood}}}$$

- Estimating $p(\mathbf{Y}) = \int p(\mathbf{F})p(\mathbf{Y} \,|\, \mathbf{F})d\mathbf{F}$ is hard
- Instead, approximate $q(\mathbf{F} | \lambda) \approx p(\mathbf{F} | \mathbf{Y})$ to minimize:

$$\mathrm{KL}\left[q(\mathsf{F}\,|\,\boldsymbol{\lambda})\parallel p(\mathsf{F}\,|\,\boldsymbol{\mathsf{Y}})\right] \stackrel{\mathrm{def}}{=} \mathbb{E}_{q(\mathsf{F}\,|\,\boldsymbol{\lambda})}\log\frac{q(\mathsf{F}\,|\,\boldsymbol{\lambda})}{p(\mathsf{F}\,|\,\boldsymbol{\mathsf{Y}})}$$

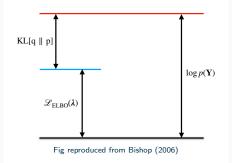
Properties:

$$KL[q \parallel p] \ge 0,$$

$$KL[q \parallel p] = 0 \text{ iff } q = p.$$

Decomposition of the Marginal Likelihood

$$\log p(\mathbf{Y}) = \mathrm{KL}\left[q(\mathbf{F} \,|\, \boldsymbol{\lambda}) \parallel p(\mathbf{F} \,|\, \mathbf{Y})\right] + \mathcal{L}_{\mathrm{ELBO}}(\boldsymbol{\lambda})$$



- ullet $\mathcal{L}_{ ext{ELBO}}(oldsymbol{\lambda})$ is a lower bound on the log marginal likelihood
- The optimum is achieved when q = p
- ullet Maximizing $\mathcal{L}_{ ext{ELBO}}(oldsymbol{\lambda}) \equiv$ minimizing KL $[q(oldsymbol{\mathsf{F}}\,|\,oldsymbol{\lambda}) \parallel p(oldsymbol{\mathsf{F}}\,|\,oldsymbol{\mathsf{Y}})]$

Variational Inference Strategy

ullet The evidence lower bound $\mathcal{L}_{ ext{ iny ELBO}}(oldsymbol{\lambda})$ can be written as:

$$\mathcal{L}_{\text{ELBO}}(\lambda) \stackrel{\text{def}}{=} \underbrace{\mathbb{E}_{q(\mathsf{F} \,|\, \lambda)} \log p(\mathsf{Y} \,|\, \mathsf{F})}_{\text{expected log likelihood (ELL)}} - \underbrace{\text{KL}\left[q(\mathsf{F} \,|\, \lambda) \parallel p(\mathsf{F})\right]}_{\text{KL(approx. posterior} \parallel \text{ prior)}}$$

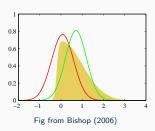
• ELL is a model-fit term and KL is a penalty term

Variational Inference Strategy

ullet The evidence lower bound $\mathcal{L}_{ ext{ELBO}}(oldsymbol{\lambda})$ can be written as:

$$\mathcal{L}_{\text{ELBO}}(\boldsymbol{\lambda}) \stackrel{\text{def}}{=} \underbrace{\mathbb{E}_{q(\textbf{F} \, | \, \boldsymbol{\lambda})} \log p(\textbf{Y} \, | \, \textbf{F})}_{\text{expected log likelihood (ELL)}} - \underbrace{\text{KL}\left[q(\textbf{F} \, | \, \boldsymbol{\lambda}) \parallel p(\textbf{F})\right]}_{\text{KL(approx. posterior} \parallel \text{ prior})}$$

- ELL is a model-fit term and KL is a penalty term
- What family of distributions?
 - ► As flexible as possible
 - Tractability is the main constraint
 - ► No risk of over-fitting

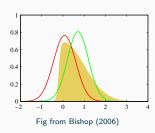


Variational Inference Strategy

ullet The evidence lower bound $\mathcal{L}_{ ext{ELBO}}(oldsymbol{\lambda})$ can be written as:

$$\mathcal{L}_{\text{ELBO}}(\lambda) \stackrel{\text{def}}{=} \underbrace{\mathbb{E}_{q(\mathsf{F} \,|\, \lambda)} \log p(\mathsf{Y} \,|\, \mathsf{F})}_{\text{expected log likelihood (ELL)}} - \underbrace{\text{KL}\left[q(\mathsf{F} \,|\, \lambda) \parallel p(\mathsf{F})\right]}_{\text{KL(approx. posterior} \parallel \text{ prior)}}$$

- ELL is a model-fit term and KL is a penalty term
- What family of distributions?
 - ► As flexible as possible
 - Tractability is the main constraint
 - No risk of over-fitting



We want to maximise $\mathcal{L}_{ ext{ELBO}}(\pmb{\lambda})$ wrt variational parameters $\pmb{\lambda}$

Goal: Approximate intractable posterior $p(\mathbf{F} | \mathbf{Y})$ with variational distribution

$$q(\mathbf{F} \mid \boldsymbol{\lambda}) = \sum_{k=1}^K \pi_k q_k(\mathbf{F} \mid \boldsymbol{\lambda}) = \sum_{k=1}^K \pi_k \prod_{j=1}^Q \mathcal{N}(\mathbf{F}_k; \mathbf{m}_{kj}, \mathbf{S}_{kj})$$

with variational parameters $\pmb{\lambda} = \{\pmb{\mathsf{m}}_{kj}, \pmb{\mathsf{S}}_{kj}\}$,

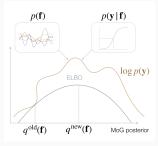
Goal: Approximate intractable posterior $p(\mathbf{F} | \mathbf{Y})$ with variational distribution

$$q(\mathbf{F} \mid \boldsymbol{\lambda}) = \sum_{k=1}^K \pi_k q_k(\mathbf{F} \mid \boldsymbol{\lambda}) = \sum_{k=1}^K \pi_k \prod_{j=1}^Q \mathcal{N}(\mathbf{F}_k; \mathbf{m}_{kj}, \mathbf{S}_{kj})$$

with variational parameters $\lambda = \{\mathbf{m}_{kj}, \mathbf{S}_{kj}\}$,

Recall $\mathcal{L}_{ ext{ELBO}}(oldsymbol{\lambda}) = ext{-} \mathsf{KL} + \mathsf{ELL}$:

- KL term can be bounded using Jensen's inequality
 - ► Exact gradients of parameters



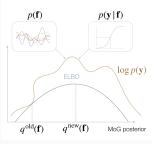
Goal: Approximate intractable posterior $p(\mathbf{F} | \mathbf{Y})$ with variational distribution

$$q(\mathbf{F} \mid \boldsymbol{\lambda}) = \sum_{k=1}^K \pi_k q_k(\mathbf{F} \mid \boldsymbol{\lambda}) = \sum_{k=1}^K \pi_k \prod_{j=1}^Q \mathcal{N}(\mathbf{F}_k; \mathbf{m}_{kj}, \mathbf{S}_{kj})$$

with variational parameters $\pmb{\lambda} = \{\pmb{\mathsf{m}}_{kj}, \pmb{\mathsf{S}}_{kj}\}$,

Recall $\mathcal{L}_{ ext{ELBO}}(oldsymbol{\lambda}) = ext{-} \mathsf{KL} + \mathsf{ELL}$:

- KL term can be bounded using Jensen's inequality
 - ► Exact gradients of parameters



ELL and its gradients can be estimated *efficiently*

Expected Log Likelihood Term

Th.1: Efficient estimation

The ELL and its gradients can be estimated using expectations over univariate Gaussian distributions.

 $q_{k(n)} \stackrel{\text{def}}{=} q_{k(n)}(\mathbf{F}_{\cdot n} | \boldsymbol{\lambda}_{k(n)})$

$$\begin{split} \mathbb{E}_{q_k} \log p(\mathbf{Y} \,|\, \mathbf{F}) &= \sum_{n=1}^N \mathbb{E}_{q_{k(n)}} \log p(\mathbf{Y}_{n \cdot} \,|\, \mathbf{F}_{n \cdot}) \\ \nabla_{\boldsymbol{\lambda}_{k(n)}} \mathbb{E}_{q_{k(n)}} \log p(\mathbf{Y}_{n \cdot} \,|\, \mathbf{F}_{n \cdot}) &= \mathbb{E}_{q_{k(n)}} \nabla_{\boldsymbol{\lambda}_{k(n)}} \log q_{k(n)}(\mathbf{F}_{\cdot n} \,|\, \boldsymbol{\lambda}_{k(n)}) \log p(\mathbf{Y}_{n \cdot} \,|\, \mathbf{F}_{n \cdot}) \end{split}$$

Expected Log Likelihood Term

Th.1: Efficient estimation

The ELL and its gradients can be estimated using expectations over univariate Gaussian distributions.

$$egin{aligned} q_{k(n)} &\stackrel{ ext{def}}{=} q_{k(n)}(\mathbf{F}_{\cdot n} \,|\, oldsymbol{\lambda}_{k(n)}) \ &\mathbb{E}_{q_k} \log p(\mathbf{Y} \,|\, \mathbf{F}) = \sum_{n=1}^N \mathbb{E}_{q_{k(n)}} \log p(\mathbf{Y}_{n \cdot} \,|\, \mathbf{F}_{n \cdot}) \end{aligned}$$

$$abla_{oldsymbol{\lambda}_{k(n)}} \mathbb{E}_{q_{k(n)}} \log p(\mathbf{Y}_{n\cdot} \,|\, \mathbf{F}_{n\cdot}) = \mathbb{E}_{q_{k(n)}}
abla_{oldsymbol{\lambda}_{k(n)}} \log q_{k(n)}(\mathbf{F}_{\cdot n} \,|\, oldsymbol{\lambda}_{k(n)}) \log p(\mathbf{Y}_{n\cdot} \,|\, \mathbf{F}_{n\cdot})$$

Practical consequences

- Can use unbiased Monte Carlo estimates
- Gradients of the likelihood are not required (only likelihood evaluations)

ullet Holds $orall Q \geq 1$

Scalability through Inducing Variables and Stochastic Variational

Inference (SVI)

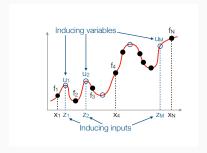
Inducing Variables in GP Models

Inducing variables **u**

- Latent values of the GP, as f and f*
- Usually marginalized (integrated out)

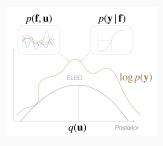
Inducing inputs **Z**

- Corresponding input location, as x
- Imprint on final solution

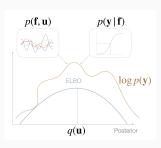


Generalization of "support points", "active set", "pseudo-inputs"

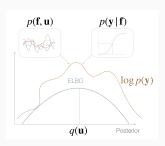
- Augmented prior $p(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u})p(\mathbf{u})$, exact marginal $p(\mathbf{f})$
- Approximate posterior $q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u})q(\mathbf{u})$



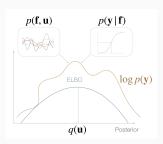
- Augmented prior $p(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u})p(\mathbf{u})$, exact marginal $p(\mathbf{f})$
- Approximate posterior $q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u})q(\mathbf{u})$
- Cubic operations on N 'vanish'



- Augmented prior $p(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u})p(\mathbf{u})$, exact marginal $p(\mathbf{f})$
- Approximate posterior $q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} \mid \mathbf{u})q(\mathbf{u})$
- Cubic operations on N 'vanish'
- Exact optimal solution for Gaussian likelihood

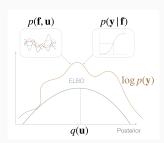


- Augmented prior $p(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u})p(\mathbf{u})$, exact marginal $p(\mathbf{f})$
- Approximate posterior $q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} \mid \mathbf{u})q(\mathbf{u})$
- Cubic operations on N 'vanish'
- Exact optimal solution for Gaussian likelihood
- Hyper-parameters and inducing inputs optimized jointly



- Augmented prior $p(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} | \mathbf{u})p(\mathbf{u})$, exact marginal $p(\mathbf{f})$
- Approximate posterior $q(\mathbf{f}, \mathbf{u}) = p(\mathbf{f} \mid \mathbf{u})q(\mathbf{u})$
- Cubic operations on N 'vanish'
- Exact optimal solution for Gaussian likelihood
- Hyper-parameters and inducing inputs optimized jointly

Computation dominated by:



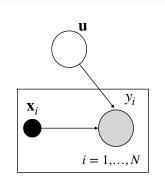
$$K_{XZ}K_{ZZ}^{-1}K_{ZX}$$

Time cost $\mathcal{O}(NM^2)$, can we do better?

Stochastic Variational Inference for GP Models

Maintain an explicit representation of $q(\mathbf{u}) = \mathcal{N}(\mathbf{m}, \mathbf{S})$

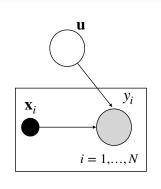
- Inducing variables act as global variables
- ELBO decomposes across observations
- Use stochastic optimization
- $\mathbf{K}_{\mathbf{x}_i\mathbf{Z}}\mathbf{K}_{\mathbf{ZZ}}^{-1}\mathbf{K}_{\mathbf{Zx}_i}$: Time cost $\mathcal{O}(M^3) \to \text{big data!}$



Stochastic Variational Inference for GP Models

Maintain an explicit representation of $q(\mathbf{u}) = \mathcal{N}(\mathbf{m}, \mathbf{S})$

- Inducing variables act as global variables
- ELBO decomposes across observations
- Use stochastic optimization
- $\mathbf{K}_{\mathbf{x}_i\mathbf{Z}}\mathbf{K}_{\mathbf{ZZ}}^{-1}\mathbf{K}_{\mathbf{Zx}_i}$: Time cost $\mathcal{O}(M^3) \to \text{big data!}$

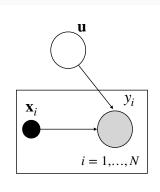


 Converge to optimal solution for Gaussian likelihoods (Hensman et al, UAI, 2013)

Stochastic Variational Inference for GP Models

Maintain an explicit representation of $q(\mathbf{u}) = \mathcal{N}(\mathbf{m}, \mathbf{S})$

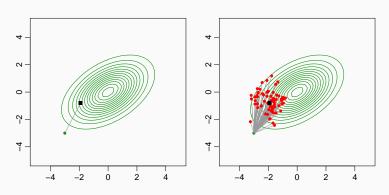
- Inducing variables act as global variables
- ELBO decomposes across observations
- Use stochastic optimization
- $\mathbf{K}_{\mathbf{x}_i\mathbf{Z}}\mathbf{K}_{\mathbf{ZZ}}^{-1}\mathbf{K}_{\mathbf{Zx}_i}$: Time cost $\mathcal{O}(M^3) \to \text{big data!}$



- Converge to optimal solution for Gaussian likelihoods (Hensman et al, UAI, 2013)
- Generalization to LGPMs (Dezfouli & Bonilla, NeurIPS, 2015)

Stochastic Gradient Optimization

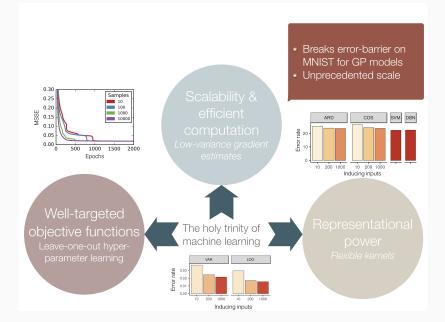
$$\mathbb{E}\left\{\widetilde{\nabla_{\mathrm{vpar}}}\mathrm{LowerBound}\right\} = \nabla_{\mathrm{vpar}}\mathrm{LowerBound}$$



Robbins and Monro, AoMS, 1951

Stochastic Variational Inference

$$\operatorname{vpar}' = \operatorname{vpar} + \frac{\alpha_t}{2} \widetilde{\nabla_{\operatorname{vpar}}} (\operatorname{LowerBound}) \qquad \alpha_t \to 0$$



Conclusion

- LGPMs: General framework for GP priors and non-linear likelihoods
- Applications in multi-class classification, multi-output regression, modelling count data and more
- Generic inference via optimisation of the variational objective (ELBO)
- Scalability via inducing-variable approach
- AutoGP