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Challenges in Bayesian Reasoning with Gaussian Process Priors

p(f) : prior over geology and rock

properties

p(y | f) : observation model’s likelihood

p(f|y) : posterior geological model:

p(f | y,θ) =
p(f |θ)p(y | f)∫
p(f |θ)p(y | f)df︸ ︷︷ ︸

hard bit

Challenges:

I Non-linear likelihood models
I Large datasets

$20 Million geothermal well

Geol. surveys and explorations 2
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Automated Probabilistic Reasoning

• Approximate inference
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Goal: Build generic 
yet practical 

inference tools for 
practitioners and 

researchers

VI

MCMC

• Other dimensions:
I Accuracy
I Convergence
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Outline

1 Latent Gaussian Process Models (LGPMs)

2 Variational Inference

3 Scalability through Inducing Variables and Stochastic Variational

Inference (SVI)
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Latent Gaussian Process Models

(LGPMs)



Latent Gaussian Process Models (LGPMs)

Supervised learning D = {xn, yn}Nn=1

• Factorised GP priors over Q latent

functions:

fj(x) ∼ GP(0, κj(x, x′;θ))

p(F |X,θ) =
Q∏
j=1

N (F·j ; 0,Kj)

• Factorised likelihood over observations

p(Y |X,F,φ) =
N∏

n=1

p(Yn· |Fn·,φ)

What can we model within this framework?

5



Latent Gaussian Process Models (LGPMs)

Supervised learning D = {xn, yn}Nn=1

• Factorised GP priors over Q latent

functions:

fj(x) ∼ GP(0, κj(x, x′;θ))

p(F |X,θ) =
Q∏
j=1

N (F·j ; 0,Kj)

• Factorised likelihood over observations

p(Y |X,F,φ) =
N∏

n=1

p(Yn· |Fn·,φ)

What can we model within this framework?

5



Latent Gaussian Process Models (LGPMs)

Supervised learning D = {xn, yn}Nn=1

• Factorised GP priors over Q latent

functions:

fj(x) ∼ GP(0, κj(x, x′;θ))

p(F |X,θ) =
Q∏
j=1

N (F·j ; 0,Kj)

• Factorised likelihood over observations

p(Y |X,F,φ) =
N∏

n=1

p(Yn· |Fn·,φ)

What can we model within this framework?

5



Examples of LGPMs (1)

• Multi-output regression

• Multi-class classification

I P = Q classes
I softmax likelihood
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Examples of LGPMs (2)

• Inversion problems
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Examples of LGPMs (3)

• Log Gaussian Cox processes (LGCPs)
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Inference in LGPMs

We only require access to ‘black-box’ likelihoods. How can we

carry out inference in these general models?
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Variational Inference



Variational Inference (VI): Optimise Rather than Integrate

Recall our posterior estimation problem:

p(F |Y)︸ ︷︷ ︸
posterior

=
1

p(Y)︸ ︷︷ ︸
marginal
likelihood

p(F)︸︷︷︸
prior

p(Y |F)︸ ︷︷ ︸
conditional
likelihood

• Estimating p(Y) =
∫
p(F)p(Y |F)dF is hard

• Instead, approximate q(F |λ) ≈ p(F |Y) to minimize:

kl [q(F |λ) ‖ p(F |Y)]
def
= Eq(F |λ) log

q(F |λ)

p(F |Y)

Properties:

kl [q ‖ p] ≥ 0,

kl [q ‖ p] = 0 iff q = p.
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Decomposition of the Marginal Likelihood

log p(Y) = kl [q(F |λ) ‖ p(F |Y)] + Lelbo(λ)

log p(Y)

KL[q ∥ p]

ℒELBO(λ)

Fig reproduced from Bishop (2006)

• Lelbo(λ) is a lower bound on the log marginal likelihood

• The optimum is achieved when q = p

• Maximizing Lelbo(λ) ≡ minimizing kl [q(F |λ) ‖ p(F |Y)]
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Variational Inference Strategy

• The evidence lower bound Lelbo(λ) can be written as:

Lelbo(λ)
def
= Eq(F |λ) log p(Y |F)︸ ︷︷ ︸

expected log likelihood (ELL)

− kl [q(F |λ) ‖ p(F)]︸ ︷︷ ︸
KL(approx. posterior ‖ prior)

• ELL is a model-fit term and KL is a penalty term

• What family of distributions?

I As flexible as possible
I Tractability is the main

constraint
I No risk of over-fitting

Fig from Bishop (2006)

We want to maximise Lelbo(λ) wrt variational parameters λ
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Automated VI for LGPMs (Nguyen and Bonilla, NeurIPS, 2014)

Goal: Approximate intractable posterior p(F |Y) with variational

distribution

q(F |λ) =
K∑

k=1

πkqk(F |λ) =
K∑

k=1

πk

Q∏
j=1

N (Fk ; mkj ,Skj)

with variational parameters λ = {mkj ,Skj},

Recall Lelbo(λ) = - KL + ELL:

• KL term can be bounded using
Jensen’s inequality

I Exact gradients of parameters

ELL and its gradients can be estimated efficiently
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Expected Log Likelihood Term

Th.1: Efficient estimation

The ELL and its gradients can be estimated using expectations

over univariate Gaussian distributions.

qk(n)
def
= qk(n)(F·n |λk(n))

Eqk log p(Y |F) =
N∑

n=1

Eqk(n) log p(Yn· |Fn·)

∇λk(n)
Eqk(n) log p(Yn· |Fn·) = Eqk(n)∇λk(n)

log qk(n)(F·n |λk(n)) log p(Yn· |Fn·)

Practical consequences

• Can use unbiased Monte Carlo estimates

• Gradients of the likelihood are not required (only likelihood

evaluations)

• Holds ∀Q ≥ 1

14
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Scalability through Inducing

Variables and Stochastic Variational

Inference (SVI)



Inducing Variables in GP Models

Inducing variables u

• Latent values of the GP,

as f and f∗

• Usually marginalized

(integrated out)

Inducing inputs Z

• Corresponding input

location, as x

• Imprint on final solution

Inducing variables

Inducing inputs

u1
u2

uM

z1 z2 zM

f1
f3

f4

fN

x1 x4 xN

f2

Generalization of “support points”, “active set”, “pseudo-inputs”

15



Variational Learning of Inducing Variables (Titisias, AISTATS, 2009)

• Augmented prior p(f,u) = p(f |u)p(u), exact marginal p(f)

• Approximate posterior q(f,u) = p(f |u)q(u)

• Cubic operations on N ‘vanish’

• Exact optimal solution for

Gaussian likelihood

• Hyper-parameters and inducing

inputs optimized jointly

Computation dominated by:

KXZK−1ZZKZX

Time cost O(NM2), can we do better?
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Stochastic Variational Inference for GP Models

Maintain an explicit representation of q(u) = N (m,S)

• Inducing variables act as

global variables

• ELBO decomposes across

observations

• Use stochastic optimization

• KxiZK−1ZZKZxi : Time cost

O(M3) → big data!

yi

i = 1,…, N

xi

u

• Converge to optimal solution for Gaussian likelihoods

(Hensman et al, UAI, 2013)

• Generalization to LGPMs (Dezfouli & Bonilla, NeurIPS, 2015)
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Stochastic Gradient Optimization

E
{
∇̃vparLowerBound

}
= ∇vparLowerBound
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Robbins and Monro, AoMS, 1951
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Stochastic Variational Inference

vpar′ = vpar +
αt

2
∇̃vpar(LowerBound) αt → 0

Robbins and Monro, AoMS, 1951
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Further Developments: AutoGP (Krauth et al UAI, 2017)
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Conclusion

• LGPMs: General framework for GP priors and non-linear

likelihoods

• Applications in multi-class classification, multi-output

regression, modelling count data and more

• Generic inference via optimisation of the variational objective

(ELBO)

• Scalability via inducing-variable approach

• AutoGP
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