Modern Gaussian Processes: Scalable Inference and Novel Applications

(Part I-a) Introduction

Edwin V. Bonilla and Maurizio Filippone

CSIRO's Data61, Sydney, Australia and EURECOM, Sophia Antipolis, France

July 14th, 2019

Gaussian Processes for Machine Learning Carl E. Rasmussen and Christopher K. I. Williams, 2006

Pattern Recognition and Machine Learning Christopher Bishop, 2006

Tutorial webpage

https://ebonilla.github.io/gaussianprocesses

Motivation

• Climate modeling

• Classification and progression modeling of neurodegenerative diseases

Filippone et al., AoAS, 2012

A Unified Framework

A model might be expensive to simulate/inaccurate

• Emulate model/discrepancy using a surrogate

A Unified Framework

A model might be expensive to simulate/inaccurate

• Emulate model/discrepancy using a surrogate

- A model might not even be available
 - Make use of a flexible model, e.g., Neural Nets

A Unified Framework

A model might be expensive to simulate/inaccurate

• Emulate model/discrepancy using a surrogate

- A model might not even be available
 - Make use of a flexible model, e.g., Neural Nets

Quantification of Uncertainty

- Bayesian Neural Nets
- Gaussian Processes

Consider two continuous random variables x and y

• Sum rule:

$$p(x) = \int p(x, y) dy$$

• Product rule:

$$p(x, y) = p(x|y)p(y) = p(y|x)p(x)$$

Consider two continuous random variables x and y

• Sum rule:

$$p(x) = \int p(x, y) dy$$

• Product rule:

$$p(x, y) = p(x|y)p(y) = p(y|x)p(x)$$

• Bayes' rule:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

• NOTE: Bayes' rule is a direct consequence of the product rule

• Preamble [MF]

- Introduction
- Definition of Gaussian Processes
- Approximations
 - Model Approximations [MF]
 - \implies Break \iff
 - ► Inference [EVB]
- Applications, Challenges & Opportunities [EVB]
- Theory and Code [MF]