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Random Feature Expansions



Bochner’s theorem

• Continuous shift-invariant covariance function

k(xi − xj |θ) = σ2

∫
p(ω|θ) exp

(
ι(xi − xj)

>ω
)
dω

• Monte Carlo estimate

k(xi − xj |θ) ≈ σ2

NRF

NRF∑
r=1

z(xi |ω̃r )>z(xj |ω̃r )

with

ω̃r ∼ p(ω|θ)

z(x|ω) = [cos(x>ω), sin(x>ω)]>

Rahimi and Recht, NIPS, 2008 - Lázaro-Gredilla et al., JMLR, 2010
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GPs with Random Fourier Features

• Define

Φ =

√
σ2

NRF
[cos (XΩ) , sin (XΩ)]

and

f = Φw

• GPs become Bayesian linear models with

p (w) = N (0, I)

• Low-rank approximation of K

cov(f) = E[Φww>Φ>] = ΦΦ> ≈ K
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GPs with Random Features become Bayesian Linear Models

• Neural Network-like diagram

θ

ΦX

f y

Ω w
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Low-Rank Approximations



Low-Rank Approximations

• Marginal likelihood GP regression:

−1

2
log |Ky| −

1

2
y>K−1

y y + const.

• Most GP approximations aim to form a low-rank

approximation to the covariance matrix

Ky = K + σ2I ≈ UCV + σ2I
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Low-Rank Approximations

• Woodbury identity for the inverse

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1

-1

-1 -1 -1 -1
-1

-1

• Similar for the log-determinant

• This reduces complexity from O(N3) to O(M3) +O(NM2)

with M � N
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Sparse GPs with Nyström Approximation

• Introduce M pseudo-inputs collected in Z . . .

• . . . and corresponding inducing variables u

• Nyström approximation

K ≈ KXZK−1
ZZKZX

f

y 

θ X 

u

Z 

Snelson and Ghahramani, NIPS, 2005 – Quinonero-Candela and Rasmussen, JMLR, 2005 8



Sparse GPs with Nyström Approximation

• Introduce M pseudo-inputs collected in Z . . .

• . . . and corresponding inducing variables u

• Nyström approximations with diagonal correction

K ≈ diag(K−KXZK−1
ZZKZX) + KXZK−1

ZZKZX
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Snelson and Ghahramani, NIPS, 2005 – Quinonero-Candela and Rasmussen, JMLR, 2005 9



Structured Inputs

• When inputs lie on a regular 1D grid and κ(xi , xj) = κ(xi − xj)

• K is Toeplitz

K =


a b c d

b a b c

c b a b

d c b a


• Solving K exactly costs O(N logN) time!

Saatçi, Ph.D. Thesis, 2011
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Structured Inputs

• When inputs lie on a regular grid and κ(xi , xj) = κ(xi − xj)

• K can be decomposed is Toeplitz

K = K1 ⊗ . . .⊗Kd

where Kp has entries κ(x
(p)
i , x

(p)
j )

• Algebraic operations for K are based on faster ones for each

factor Kp in the Kronecker product

Saatçi, Ph.D. Thesis, 2011
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Structured Inducing Points

• Consider a sparse GP:

K ≈ KXZK−1
ZZKZX

• Z on a grid makes the inverse fast (Toeplitz)!

• Can afford M � N

• Still expensive to deal with KZX . . . O(NM2)
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Structured Inducing Points

• Consider a sparse GP:

K ≈ KXZK−1
ZZKZX

• Kernel Interpolation (KISS-GP)

KXZ ≈WKZZ

with W a sparse “interpolation” matrix, so that

K ≈ KXZK−1
ZZKZX ≈WK−1

ZZW>

• All products/inverses are fast even if M � N!

Wilson, NIPS, 2015
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