Modern Gaussian Processes: Scalable Inference and Novel Applications

(Part II-a) Model Approximations

Edwin V. Bonilla and Maurizio Filippone

CSIRO's Data61, Sydney, Australia and EURECOM, Sophia Antipolis, France

July 14th, 2019

1 Random Feature Expansions

2 Low-Rank Approximations Inducing Variables Structured Approximations

Random Feature Expansions

Bochner's theorem

• Continuous shift-invariant covariance function

$$k(\mathbf{x}_i - \mathbf{x}_j | \boldsymbol{\theta}) = \sigma^2 \int p(\omega | \boldsymbol{\theta}) \exp\left(\iota(\mathbf{x}_i - \mathbf{x}_j)^\top \omega\right) d\omega$$

Bochner's theorem

• Continuous shift-invariant covariance function

$$k(\mathbf{x}_i - \mathbf{x}_j | \boldsymbol{\theta}) = \sigma^2 \int p(\omega | \boldsymbol{\theta}) \exp\left(\iota(\mathbf{x}_i - \mathbf{x}_j)^\top \omega\right) d\omega$$

• Monte Carlo estimate

$$k(\mathbf{x}_i - \mathbf{x}_j | \boldsymbol{\theta}) pprox rac{\sigma^2}{N_{
m RF}} \sum_{r=1}^{N_{
m RF}} \mathbf{z}(\mathbf{x}_i | \tilde{\omega}_r)^{ op} \mathbf{z}(\mathbf{x}_j | \tilde{\omega}_r)$$

with

$$\begin{split} & \tilde{\omega}_r \sim p(\omega|oldsymbol{ heta}) \ \mathbf{z}(\mathbf{x}|\omega) = [\cos(\mathbf{x}^{ op}\omega),\sin(\mathbf{x}^{ op}\omega)]^{ op} \end{split}$$

GPs with Random Fourier Features

• Define

$$\mathbf{\Phi} = \sqrt{\frac{\sigma^2}{N_{\rm RF}}} \left[\cos \left(\mathbf{X} \Omega \right), \sin \left(\mathbf{X} \Omega \right) \right]$$

and

$$\mathbf{f} = \mathbf{\Phi} \mathbf{w}$$

• GPs become Bayesian linear models with

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

 $\bullet\,$ Low-rank approximation of ${\bf K}$

$$\operatorname{cov}(\mathbf{f}) = \mathbb{E}[\mathbf{\Phi}\mathbf{w}\mathbf{w}^{ op}\mathbf{\Phi}^{ op}] = \mathbf{\Phi}\mathbf{\Phi}^{ op} pprox \mathbf{K}$$

• Neural Network-like diagram

Low-Rank Approximations

• Marginal likelihood GP regression:

$$-\frac{1}{2}\log|\boldsymbol{\mathsf{K}}_{\boldsymbol{\mathsf{y}}}| - \frac{1}{2}\boldsymbol{\mathsf{y}}^{\top}\boldsymbol{\mathsf{K}}_{\boldsymbol{\mathsf{y}}}^{-1}\boldsymbol{\mathsf{y}} + \mathrm{const.}$$

 Most GP approximations aim to form a low-rank approximation to the covariance matrix

$$\mathbf{K}_{\mathbf{y}} = \mathbf{K} + \sigma^{2} \mathbf{I} \approx \mathbf{U} \mathbf{C} \mathbf{V} + \sigma^{2} \mathbf{I}$$

Low-Rank Approximations

• Woodbury identity for the inverse

$$(\mathbf{A} + \mathbf{U}\mathbf{C}\mathbf{V})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{C}^{-1} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}$$

- Similar for the log-determinant
- This reduces complexity from $\mathcal{O}(N^3)$ to $\mathcal{O}(M^3) + \mathcal{O}(NM^2)$ with $M \ll N$

Sparse GPs with Nyström Approximation

- Introduce *M* pseudo-inputs collected in *Z* ...
- $\bullet \ \ldots$ and corresponding inducing variables u
- Nyström approximation

$$\mathbf{K} pprox \mathbf{K}_{\mathbf{X}\mathbf{Z}} \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} \mathbf{K}_{\mathbf{Z}\mathbf{X}}$$

Sparse GPs with Nyström Approximation

- Introduce *M* pseudo-inputs collected in *Z* ...
- $\bullet \ \ldots$ and corresponding inducing variables u
- Nyström approximations with diagonal correction

$$\mathbf{K} \approx \operatorname{diag}(\mathbf{K} - \mathbf{K}_{\mathbf{XZ}}\mathbf{K}_{\mathbf{ZZ}}^{-1}\mathbf{K}_{\mathbf{ZX}}) + \mathbf{K}_{\mathbf{XZ}}\mathbf{K}_{\mathbf{ZZ}}^{-1}\mathbf{K}_{\mathbf{ZX}}$$

Structured Inputs

- When inputs lie on a regular 1D grid and $\kappa(\mathbf{x}_i, \mathbf{x}_j) = \kappa(\mathbf{x}_i \mathbf{x}_j)$
- K is Toeplitz

$$\mathbf{K} = \left(egin{array}{cccc} a & b & c & d \ b & a & b & c \ c & b & a & b \ d & c & b & a \end{array}
ight)$$

• Solving K exactly costs $\mathcal{O}(N \log N)$ time!

Structured Inputs

- When inputs lie on a regular grid and $\kappa(\mathbf{x}_i, \mathbf{x}_j) = \kappa(\mathbf{x}_i \mathbf{x}_j)$
- K can be decomposed is Toeplitz

$$\mathbf{K} = \mathbf{K}_1 \otimes \ldots \otimes \mathbf{K}_d$$

where \mathbf{K}_{p} has entries $\kappa(\mathbf{x}_{i}^{(p)}, \mathbf{x}_{j}^{(p)})$

 Algebraic operations for K are based on faster ones for each factor K_p in the Kronecker product • Consider a sparse GP:

$\mathbf{K} \approx \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{K}_{\mathbf{Z}\mathbf{X}}$

- Z on a grid makes the inverse fast (Toeplitz)!
- Can afford $M \gg N$
- Still expensive to deal with K_{ZX} ... O(NM²)

Structured Inducing Points

• Consider a sparse GP:

 $\mathbf{K} \approx \mathbf{K}_{\mathbf{X}\mathbf{Z}}\mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1}\mathbf{K}_{\mathbf{Z}\mathbf{X}}$

• Kernel Interpolation (KISS-GP)

 $\mathbf{K_{XZ}}\approx\mathbf{WK_{ZZ}}$

with W a sparse "interpolation" matrix, so that

$$\mathbf{K} \approx \mathbf{K}_{\mathbf{X}\mathbf{Z}} \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} \mathbf{K}_{\mathbf{Z}\mathbf{X}} \approx \mathbf{W} \mathbf{K}_{\mathbf{Z}\mathbf{Z}}^{-1} \mathbf{W}^{\top}$$

• All products/inverses are fast even if $M \gg N!$