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Random Feature Expansions



Bochner’s theorem

e Continuous shift-invariant covariance function

k(x; — x;|0) = o2 /p(w()) exp (L(X,' - xj)Tw) dw



Bochner’s theorem

e Continuous shift-invariant covariance function

k(x; — x;|0) = o2 /p(w()) exp (L(X,' - xj)Tw) dw

e Monte Carlo estimate

o2 Nrr
k(xj — x;|0) ~ Neep 2(xi|@r) " 2(xj|@r)
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with
& ~ p(w|0)

z(x|w) = [cos(xTw),sin(xTw)]T

Rahimi and Recht, NIPS, 2008 - Lizaro-Gredilla et al., JMLR, 2010



GPs with Random Fourier Features
e Define
o2
® = ([ —— [cos (X),sin (XQ)]
NRp

f =odw

and

e GPs become Bayesian linear models with
p(w) =N (0,1)
e Low-rank approximation of K

cov(f) = E[dww &' = dd " x~ K



GPs with Random Features become Bayesian Linear Models

e Neural Network-like diagram




Low-Rank Approximations




Low-Rank Approximations

e Marginal likelihood GP regression:

1 1
) log |Ky| — 5 TKy_1 + const.

e Most GP approximations aim to form a low-rank
approximation to the covariance matrix

Ky = K+ 0’1 = UCV + o°I



Low-Rank Approximations

e Woodbury identity for the inverse

(A+ucv)l=At_Alyct+valu)ylval

e Similar for the log-determinant
e This reduces complexity from O(N3) to O(M3) + O(NM?)
with M < N



rse GPs with Nystrom Approximation

e Introduce M pseudo-inputs collected in Z ...
e ... and corresponding inducing variables u
e Nystrom approximation

K ~ KXZKZ%KZX

Snelson and Ghahramani, NIPS, 2005 — Quinonero-Candela and Rasmussen, JMLR, 2005 8



m Approximation

e Introduce M pseudo-inputs collected in Z ...
e ... and corresponding inducing variables u
e Nystrom approximations with diagonal correction

K ~ diag(K — KxzK57Kzx) + KxzK72Kzx

Snelson and Ghahramani, NIPS, 2005 — Quinonero-Candela and Rasmussen, JMLR, 2005 9



Structured Inputs

e When inputs lie on a regular 1D grid and x(x;, %) = &(x; — x;)

o K is Toeplitz
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e Solving K exactly costs O(N log N) time!

Saatg¢i, Ph.D. Thesis, 2011
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Structured Inputs

e When inputs lie on a regular grid and s(x;, x;) = r(x; — x;)

e K can be decomposed is Toeplitz

K=K;®...0 Ky

where K, has entries H(X’(-p), xJ(.p))

e Algebraic operations for K are based on faster ones for each
factor K, in the Kronecker product

Saatci, Ph.D. Thesis, 2011
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Structured Inducing Points

Consider a sparse GP:

K ~ KxzK;2Kzx

Z on a grid makes the inverse fast (Toeplitz)!
Can afford M > N
Still expensive to deal with Kzx ... O(NM?)
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Structured Inducing Points

e Consider a sparse GP:
K ~ KxzK;1Kzx
e Kernel Interpolation (KISS-GP)
Kxz =~ WKzz

with W a sparse “interpolation” matrix, so that

K ~ KxzK;2Kzx ~ WKW '
e All products/inverses are fast even if M > N!

Wilson, NIPS, 2015
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