Predicting Best Design Trade-offs: A Case Study In
Processor Customization

Marcela Zuluaga
ETH Zirich

Abstract—Given the high level description of a task, many
different hardware modules may be generated while meetingts
behavioral requirements. The characteristics of the genexted
hardware can be tailored to favor energy efficiency, perfornance,
accuracy or die area. The inherent trade-offs between such
metrics need to be explored in order to choose a solution that

Edwin V. Bonilla
NICTA & Australian National University

Nigel Topham
University of Edinburgh

order to meet its behavioral requirements. The charatitsris

of the generated Register-Transfer Level (RTL) descniptian

be tailored to favor energy efficiency, performance, aanura
or area. The inherent trade-offs between such metrics reeed t
be explored in order to choose a solution that meets design

meets design and cost expectations. We address the generi@nd cost expectations.

problem of automatically deriving a hardware implementation
from a high-level task description. In this paper we presenta
novel technique that exploits previously explored implemetation
design spaces in order to find optimal trade-offs for new high
level descriptions. This technique is generalizable to a rge of
high-level synthesis problems in which trade-offs can be @osed
by changing the parameters of the hardware generation toolOur
strategy, based upon machine learning techniques, model$e
impact of the parameterization of the tool on the target obje&tives,
given the characteristics of the input. Thus, a predictor isable to
suggest a subset of parameters that are likely to lead to optial
hardware implementations. The proposed method is evaluate
on a resource sharing problem which is typical in high level
synthesis, where the trade-offs between area and performae
need to be explored. In this case study, we show that the tecigue
can reduce by two orders of magnitude the number of design
points that need to be explored in order to find the Pareto optinal
solutions.

|I. INTRODUCTION

In this paper, we present a novel technique to quickly
discover the design space of solutions, of a subset of higt le
synthesis problems, by exploring only parameter solutions
that are likely to lead to optimal trade-offs. This techraqu
is generalizable to a range of high-level synthesis problem
in which trade-offs can be exposed by parameterizing the
hardware generation tool. Based on previously-exploreiyde
spaces, predictive modeling is used to generate the pazamet
ization that the hardware generation process requiresdaror
to directly find the optimal trade-off solutions, given theac-
acteristics of a new input. Our strategy uses machine legrni
techniques to capture the impact of the parameterizatitmeof
tool on the target metrics, given the characteristics tipatis
Thus, a predictor is able to suggest a subset of parametdrs th
are likely to lead to optimal hardware implementations, and
therefore the need to exhaustively explore a large paramete
space is removed. This proves to be of particular value when

The increasing complexity of very large-scale integratiotihe evaluation of each design point is expensive, or wheal loc
(VLSI) designs makes the generation of fully optimized syexplorations need to be carried out repetitively as expimma
tems a big challenge. As Moore’s law continues to holdt higher levels of the design take place.

true, more resources can be placed in a single chip andrhe proposed technique is evaluated on a resource sharing
larger system modules are moved from software to dedicaj@@blem, which is typical in high level synthesis, where the
hardware in order to improve performance. Moreover, theade-offs between area and performance need to be explored
rapid proliferation of electronic devices puts pressure onith this application, we show in detail how the technique is
industry to offer not only high performance, multi-purposeonditioned to a particular process. Moreover, we dematestr
devices but also extended battery lives, low silicon costl athat in comparison with an exhaustive exploration of thegtes
new generations of products in short periods of time. Thuspace, the predictor reduced by two orders of magnitude the
embedded systems designers have to customize their smutioumber of executions of the resource-sharing process that a
in order to meet strict requirements: performance, costigpo required in order to find the optimal trade-offs.

consumption and time-to-market. As design trade-offs beco

more complex, and large design spaces define competing ob- Il. TRADE-OFFS INHARDWARE SYNTHESIS

jectives, the use of Computer Aided Design (CAD) techniques o ortunities to exploit design trade-offs can be found at

becomes essential in order to achieve optimality. Sinyi,larla_" levels of system design. The primary design trade-off in

the_ use of_higher levels of abstractions to defin_e systems, jBrdware generation processes is typically between aréa an
which designers can comfortably reason, requires advanegdsormance. As more resources are allocated, executiun i

behavioral synthesis methods that can automatically @é®eryng/or throughput can be improved. These trade-offs can be
gate-level specifications. Given the high level descriptib a exposed by parameterizing the hardware generation prémess

task, many different hardware modules may be generated,iqrithm), where parameters represent design choiceatba
978-3-9810801-8-6/DATE1d)2012 EDAA taken along its execution in order to generate a singleisolut

Typical parameters used in hardware generation processes a space according to their values. Parameter sets that
number of execution units, amount of resources to share, belong to the same cluster are expected to have simi-
memories to allocate, data types and sizes, algorithm ehoic lar values, and parameter sets that belong to different
pipeline stages, unrolling factors, etc. clusters are expected to have different characteristics.

In CAD for hardware synthesis, there are two important 3) Extraction of Distributions over Parameter Values:
types of processes in which this parameterization can be In order to model the similarities (gratterng of param-
applied. Some processes convert an abstract specification o eters within each cluster we extract a distribution over
a task into an RTL description, while others convert an RTL the parameter values for each cluster.

description into a gate level netlist. 4) Generation of Predicted Parameter ValuesWe then
A particular solution, generated with a fixed set of pa- draw samples from these distributions, i.e parameter
rameters, can be evaluated with the objectives niatricy values, that will be used as the predicted parameters

that better suit the design goals. Commonly used metrics for the unseen input, and for which we wish to evaluate
are: execution time, energy consumption and cost. Solsition their performance.

might be optimal or suboptimal in comparison to others, in The exploration in every cluster is expected to target diffe
terms of the target metrics. Every combination of parametgnt regions of the Pareto curve, and is based on the parameter
values affects differently each input, and each paramete=h yvalues taken from the training cases most similar to theemse

unique impact when evaluating trade-offs in the designepagput. We now introduce some notation and describe in more
Therefore, the parameter space has to be explored extelystidetail each of the steps mentioned above.

for every new input to the process. After this exploration is

completed, the Pareto-optimal solutions can be extradied.B- Problem Definition

solution is said to be Pareto-optimal when no other solution| et us denote thé-dimensional vectof as a vector ofD

is better in all of the target metrics. features associated with an input, and fhigyn x D matrix

Fain @s the matrix containing the features for &ll,in training

inputs. Additionally, let us denotd, scen as the vector of
As exhaustive processes are extremely time-consumifgatures for the unseen input, which we will also refer to as

machine-learning approaches can be used to predict the c@Rgrtest input. Similarly, 1P ain be the Nyain X NparamMatrix

bination of pal’ameters that results in Pareto-optimaltklﬂﬂ, of parameter values for all training inputs' Whé‘v’saramis the

based on previously explored design spaces. The ideals@enaymber of parameters. Our goal is to predict a set of paramete

being that the hardware generation process is executedenly/ajuesPseenfor the unseen input that have best performance
many times as Pareto points can be found in the design spag&erms of Pareto optimality.

Machine learning techniques can detect patterns such s tha
similar inputs respond similarly to some parameter configurC. Feature Extraction and Selection of Training Inputs
tions. These similarities across inputs can be inferrethfeo The selection of features is important to any machine
number of characteristics (deature$ extracted from them. learning-based technique as these have a direct impactwn ho
In the following sections we show that a model learned afe model differentiates between inputs and how it can gauge
training data from previous explorations can be used todspegmilarities. Features should describe the key charatiesi
up the exploration of a design space created by a new inpugt. the input that may affect the response when changing the
value of the parameters. Given an unseen set of feafess
along with the set of training featurdg;,i,, we compute the

A predictive model aims at capturing the patterns of theyclidean distances froffinseento €ach training feature vector
parameter values that generate a Pareto-optimal point innag, .. We select thé training cases closest to the new case
given process. Therefore, as the goal of the model is to find g&, choosing those training inputs with the smallest Euafidi
optimal trade-offs in the design space, different regidhthe gjstances to the unseen case. We refer to the features ef thes

parameter space need to be explored. Training samples @rgelected training inputs aBy.ain and to the associated
extracted from previously fully-explored spaces by cowpli parameters a®iain.

input features with each set of parameter values that led to _
a Pareto solution. Figure 1 illustrates the general proogssD. Clustering of Parameter Values

generating predictions (parameter values) for an unsgarn.in - Qyr goal here is to group the parameter valtRsyain
We describe four high-level steps: obtained in the previous step intodifferent clusters. Many
1) Selection of Training Inputs: In this step we select clustering algorithms have been proposed in the machime-lea
a subset of the training inputs (from our previouslyng literature, withk-meansbeing one of the most commonly
explored design spaces) that are closest to the unsesed in practical applications. Here we use a Gaussian kixtu
input, for which we are interested in making predictiondModel (GMM, see e.g. [1], Ch. 9), which is known to be
2) Clustering of Parameter Values Those parameter a probabilistic generalization of k-means, with the adaget
values associated with the selected training inputs dteat each cluster is associated with a Gaussian distrifoutio
grouped into clusters so that they partition the parameteoints in Pyyain are clustered inta: groups, thus forming

Ill. PREDICTING BESTDESIGN TRADE-OFFS

A. Construction of the Predictor

-

unseen
training tuples

P B

predicted parameters

train train

P Frn Pyirain (1) Py ctrain (1) distribution (1) I sample P ...
P . F . e Pretrain (@) Prectrain (@) distribution (2) I sample P, e
train train] 3 I % K Create i
5;:;n2ei Clustering . probability
S distributions -
XI Xz Py c-train (©) X3 distribution (c) I sample P,

P iain (K)

Fig. 1. Graphical representation of the internal procefisasmust take place in order to predict the Pareto paramatees for a new input. We are given
the features of the new inptitnseenand a set of feature-parameter training p@ifgain, Pain) Obtained from previously explored design spacks.returns
the set of parameters associated to kAh&aining inputs that are closest fanseen These parameters are represented by the mBYixain - X2 returns the
elements ofPy.iain Clustered inc groups Pk-c-train)- X3 returns the probability distribution of each cluster. Sadpgently, parameter settind®unseenare
obtained from sampling each probability distribution.

regions in the parameter space that can be independeatlget of features extracted from the input. It will attempt to
explored. Therefore, every vector Py.«rqin iS Categorized into suggest points in the parameter space that will lead to @d?are
one of theC clusters and then referred to Bg.c.train. We fit a point in the available design space.
Gaussian Mixture Model using the expectation-maximizatio The performance of the model can be a measure of how
algorithm EM [2]). many points need to be suggested in order to ensure that all
of the possible optimal points are found. Such points compos
the Pareto-curve that can be found during an exhaustive
As mentioned above, one of the advantages of using GMMgploration of the parameter space and will be referred to as
for clustering is that we have a probabilistic model fromethi the true Pareto-curve Therefore, the number of points that
we can extract the distribution corresponding to each etustre needed in order to find the true Pareto-curve will be used
straightforwardly. In particular, at the end of a GMM run, weys a metric and will be referred to @ Consequently, for
obtain a Gaussian distribution for each cluster, which Wié Wfyture explorations, the hardware generation processhaite
use to draw parameter values as candidates to be a PafgtBe executed onlyk times. R will be determined with the
optimal point on our unseen (test) input. experiments that evaluate the model.
Additionally, there is a need to measure, for a givgnthe
]] _ similarity between the true Pareto-curve and the curvehthat
Finally, we use the set of Gaussians from the previoyg.en found so far. The latter is referred tokamwn Pareto-
step in order to generate our predictiRgnseen In Order 1o ¢, rye A metric d,p is created for this purpose and calculated
achieve this we draw samples from these distributions ON&; summing up the distances from each point of the true
by-one in a round-robin fashioPunseen cONtains the values pareto-curve to the closest point of the known Pareto-curve
of the parameters that will be used in the hardware generatiger p explorations. In order to normalize the distance-based
process. metric, this sum is divided by the length of the true Pareto-
G. Number of Clusters and Neighborsk curve. Figure 2 indicates how these distances are found.

E. Extraction of Distributions over Parameters

F. Generation of Predicted Parameter Values

Having defined the procedure to generate a prediction, tth. CASE STUDY: RESOURCESHARING IN PROCESSOR
values assigned tb (number of neighbors) and(number of CUSTOMIZATION

clusters) are key to the finalization of the model for future
use. Every pair of valuegk,c) creates a new model that When new instructions (ocustom instructiorjsare added
will predict differently. For this reason, several configtions to the Instruction-Set Architecture (ISA) of a processawn
should be evaluated in order to choose these values. Itexecution units need to be added to its hardware implementa-
impractical to evaluate all of the possible configuratiamsthe tion. Thus, while more instructions are added to a processor
pair (k, c). Therefore, a reasonable list of possible values c#fte area can grow to the point that static power becomes
be taken for consideration. Given these, cross-validatam critical. An alternative to reduce the energy consumptiod a
be used for model selection [3]. In short, with cross-valista die area of a customized processor is to share resources
we learn the best combinatidit, ¢) from the training data. amongst the custom instruction hardware modules, creating
instead a module that can be configured to execute several
instructions. Resource sharing is then a process that gteser

In practice, the model will suggest values of parameters lrardware modules that are attached to the execution stage of
Punseento be used in the hardware generation process givarmprocessor. The input to this process is a set of Data-Flow

H. Performance Measure

0.10 T T T
® True Pareto-curve: found after k=40 c=5

exhaustive exploration k=20 c=15

® Known Pareto-curve: found after partial — k=10c=20
2 \ exploration of R predicted parameters 0.08r 1
.\\ Distances from each true Pareto-point @
S to the closest known Pareto-point 0.06
@l > SR

Length of the curve used to normalize d,,,

dpp

Metric 1

0.04

Fig. 2. Visualization of the components needed to calculfg, which
measures the distance between the known Pareto-curve anmutiPareto
curve. 0.02f

0005 50 100 150 200
R

Graphs (DFGs), where each DFG represents the operations
performed by a custom instruction. These graph representg: 3. Average results for 3 of thek, c) configurations that were tested.
tions are extracted from the target application code. RegouOther configurations are not included for better readghilftthe plot. Shaded
sharing involves merging the DFGs of two or more custofieas correspond to the 95% confidence interval of the mdamsva
instructions which contain a similar subgraph. Thereftine,

output of the process is a set of DFGs composed of at most [T edermesrestki0c20
as many DFGs as the input set. Aggressive merging could e
considerably increase the latency of the instructions.rtieio '
to control the effect of merging on the execution latency of
the custom instructions, [4] proposed a heuristic that para :
eterizes a resource-sharing process in order to explore the §o.1of '
design space of implementation alternatives. Implemiemtat
alternatives represent trade-offs between custom ingiruc
execution latency and area. Thus, solutions that aggedgsiv
share resources amongst the custom instructions migtemgres
the highest data-path latency. The merging process prdpose
in [4] is primarily parameterized by three threshold values
ar, Br and fp. These parameters constrain the impact of

merging on the custom instruction at different stages of ti@. 4. Experimental evaluation ofiodel-nearest-k10-c2@Results obtained

resource sharing algorithm Whemr = 1, Br = 1 and across 10 experiments are averaged. Shaded areas codesptime 95%
L . o PT . __confidence interval of the mean values.
0r = 1, the process maximizes sharing amongst the input

custom instructions in order to obtain the minimum-area
solution. On the other hand, whem; = 0, 8+ = 0 and

Or = 0, no resource sharing is performed and the minimu
instruction data-path latency is obtained. The designespéc
intermediate solutions that represent trade-offs betwarea A
savings and instruction data-path latency can be exployed b

varyingar, fr andfr values in the range [0,1]. The merging A total of 95 training cases were obtained from 56 bench-
process can be further parameterized in order to enable f8rks taken from the UTDSP [5] and SNU-RT [6] benchmark
creation of multi-function operators such as adder-selera, gyites. Custom instruction identification was performed on
through the binary parametel/ultiOp, and/or to enable each benchmark using an implementation@EGEN([7]. The
the compression of custom instruction operators that allayihallest training case contains 5 custom instructions,thed
synthesis optimizations to create modules such as muitip|grgest training case contains 26. The design space ofnesou
adders and carry-save adders, through the binary parameldring solutions was fully explored for every training &as
grouping. The exploration of this space was done by executing the

Every solution found by the parameterized resource-spariresource-sharing algorithm iteratively with differeniues of
process is characterized by the metrics: total area andweglg the parameterar, S andér, varying from O to 1 in steps
average critical path of the custom instructions. The aalti of 0.05 (resulting in 21 different values). In turn, every eé
path of the custom instructions is weighted by their executi values forar, S anddr, was run with the four combinations
frequency. The features that were chosen to quantitativelfy values for the parametensultiOp and grouping This
describe every input (or set of DFGs) are: number of DFGs (mesulted in a design space of 37,044 points. After this explo
number of custom instructions to implement); and standard dation, training input-output pairs are composed by coupli
viation, 1st quartile, 2nd quartile and 3rd quantile of teea the features extracted from the training case and the pagame
critical paths of the graphs, weighted with their corresping configurations associated with each Pareto point.

0.15f *

%ecution frequency.

. Generating the Training Data

0.20

— model-nearest-k10-c20
“““ model-random-k10-c20
- no-model

B. Experimental Evaluation of the Model

Values ink = {10, 20,40} and inc = {5, 10, 15,20} were
considered. Then, a different model was created from every
possible combinatiorik, ¢). Experiments were performed in
two rounds of cross-validation. In the first rouridandc are
chosen while in the second round, the defifitec) configura-
tion is tested. For the sake of evaluating the final configomat
on data that has not been used to choose the valuesuodc, 0.05}
the training set is partitioned in two. 90% of the training ise
used to evaluate the differerit,£) configurations with deave- :
one-out cross-validatiostrategy [3]. The 10% that is not used 0.00; S T R R 8001000
for this first round of cross-validation is used to test a niode
that takes the definitgk, c) configuration and that is trainedrig. 5. Results of predicting parameter values for an inptigenerated from
with the above-mentioned 90%. This process is repeated with Coremark application. Shaded areas correspond to e céfifidence
every 10% of the initial set of training cases. Hence, gfeval of the mean values.
every round, 90% is used to test every configuratibne).

In order to demonstrate the generalization of our teChnqu’?‘e Pareto curve found after these 200 executions will be the

by evaluating it on completely unseen cases, the parameters, e or very close to the Pareto curve that would be found

andc are tuned using only the training set and never the 8flihe algorithm was executed exhaustively for all possible
set. parameter configurations. At this point, the parameterfief t

1) Choosingk and ¢ Values: First, the 10 experiments model: k — 10, ¢ = 20, and R = 200 have been determined.
of leave-one-out cross-validation are performed. These co

respond to every 10% left out. In every experiment, eadh Practical Usage of the Model

configuration (k,c) is evaluated. Figure 3 shows average |n this section,model-nearest-k10-c2& evaluated with
values ofd,,, obtained with three of thek, c) pairs tested over coreMark [8], an application that was not used to generate
the 10 experiments. The results of @, ¢) configurations are the training sets. 40 custom instructions that were exchct
not shown for better readability of the plot. The configwati from this application constitute the input set for the pesati
with k& = 10 and ¢ = 20 showed smalleti,, values for most The results of this experiment are shown in Figure 5. The
values of R. Thus, the number of neighbotswas fixed t0 figure shows the results of predicting parameter values us-
10 and the number of clusterswas fixed to 20. The model jng model-nearest-k10-c2ehdmodel-random-k10-c2These
with this configurations will be referred to asodel-nearest- predictions are contrasted witto-modebr random prediction.
k10-c20 The value ofd,, was measured at every 10th execution of
2) Evaluating the Model: The second round of crossthe resource-sharing algorithm (every 10th parameter gonfi
validation takes place by testingiodel-nearest-k10-c20n uration explored). As seen in the figure, after 200 parameter
every 10%, while training every time on the remaining 90%onfigurations tested® = 200), d,,, values were low enough
Figure 4 shows the averaged mean valuesigf and their to conclude that the majority of the area-speedup tradeioff
95% confidence intervals, over the 10 experiments, for eveie resource-sharing design-space had been found. Thitsres
R, in increments of 10. For comparison, we also show th#so show that the modeahodel-nearest-k10-c2performs
results obtained when using a modified model, referred to @snarkably better thamodel-random-k10-c28nd no-model
model-random-k10-c2@vhich makes its predictions based on The actual running times of these explorations were mea-
20 random training samples instead of the 20 nearest onased. Experiments were performed on a workstation eqdippe
This comparison allows an evaluation of the effectivendss with 4 Xeon processors running at 3 GHz, and 4 GB of RAM.
the features in extracting the relevant characteristith®@bet. An exhaustive exploration of 37,044 points in the desigreepa
Additionally, these results are compared with a randomaxplook 15,757 minutes to complete, while the exploration ef th
ration of the parameter space. This is, instead of using @&mod00 parameter configurations suggested by the model took 111
to suggest parameter combinations, these are generated asinutes. Thus, the predictor achieved a speedup of1#l
vector composed of random numbers uniformly distributed iunning time over a exhaustive exploration. This confirnes th
the range allowed by the parameters. predictive power of the model, and demonstrates important
When usingmodel-nearest-k10-c2@t approximately? = time savings in the exploration of new design spaces.
200, d,, stabilizes to its smallest value. This means that
after 200 parameter configurations suggested by the model,
the majority of the inputs find the true Pareto-curve in the Multiobjective optimization has been a hot topic of reskarc
resource-sharing design-space. When the model is used ftor several decades. Multiple approaches for approxirgatin
future predictions, it will generate 200 parameter configurthe Pareto surface of a multi-dimentional objective spameh
tions to parameterize the resource-sharing algorithm.sThibeen proposed. Evolutionary algorithms, being one of the

0.15¢

Y
So.ao

V. RELATED WORK

most popular of these approaches, have proven to be rolslsdring, is available. Exhaustive search will always find th
and powerful search mechanisms for tackling the explanatioptimum solution, but is prohibitively expensive in praeti
of highly complex design spaces. These algorithms aim atln this case study, the predictive model is shown to reduce
evolving a population to converge to Pareto solutions My two orders of magnitude the number of executions of the
emulating natural evolution, supported by concepts such r@source-sharing algorithm that are required in order td fin
fitness, elitism, and mutation. The multi-objective natofrehe Pareto-optimal solutions, compared to an exhaustive explo
problem raises several challenges to these approachesntRe@tion of the design space.
works on this topic aim at overcoming these challenges; suchThus, it is shown that learning techniques that extract pat-
as maintaining a diverse population, and defining apprtgriderns from previously-explored spaces can be used efédgtiv
fitness functions to suit the multiple objectives [9], [10]. in order to solve complex problems that create large design
In the context of CAD, [11] proposed an unsupervisespaces but that are likely to give rise to more efficient desig
Monte-Carlo exploration, together with a statistical gséd

that allows capturing key characteristics of the desigrcespa

in high level synthesis processes. [12] proposed a genetié\“CTA is funded by the Australian Government a§ re_p-
algorithm to solve a problem of digital circuit optimizatio "€Sented by the Department of Broadband, Communications

through the development of specific structures and proesdu@nd the Digital Economy and the Australian Research Council
[13] suggested a heuristic based on Pareto simulated angeaihrough the ICT Centre of Excellence program. MZ and NT
to explore the design trade-offs generated by the para'met&‘fOUId like to thank EPSRC for their financial support under

zation of a combined design-space of architectural parnsietdrant EP/D50399X/1.
and source-program transformations. REFERENCES

. Optimization te_ChnlqueS such as evolutionary algorlthm%i] C. M. Bishop, Pattern Recognition and Machine LearningSpringer,
simulated annealing, and Monte-Carlo methods are wekduit August 2006.
for design spaces in which finding the real Pareto front by2l A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likeood

N from Incomplete Data via the EM AlgorithmJournal of the Royal
exhaustive exploration is computationally infeasible.ttis Statistical Society. Series B (Methodologicall. 39, no. 1, pp. 1-38,

paper, we target design spaces for which it is feasible to find 1977.
a good approximation of the Pareto front in order to creaté&] R. Kohavi, "A Study of Cross-Validation and Bootstrapr fAccuracy

. Estimation and Model Selection,” iRICAI'95. San Francisco, CA,
training samples. Thus, we are able to suggest a set of good USA: Morgan Kaufmann Publishers Inc., 1995, pp. 1137-1143.

parameter configurations by only extracting the charegtiesi [4] M. zuluaga and N. Topham, “Design-Space Exploration @s&urce-
of the object to be transformed by the underlying process. Sharing Solutions for Custom Instruction Set ExtensiotBBEE Trans.

In the context of processor customization, the importance fgg}puzta@ded Design Integr. Circuits Sysiol. 28, no. 12, pp. 1788~

of resource sharing in application-specific unit synthésis [5] C. Lee and M. Stoodley, “UTDSP benchmark suite,” 1992p:hwvww.
been stressed by several researchers [14], [15]. [4] showed eecg.toronto.edu/corinna/DSP/infrastructure.htmi.20

- et ;] “SNU-RT real time benchmarks,” 2010, http://archi.smukr/realtime/
that resource sharing creates a multi-objective designespa ™ |0\ ou 5010,

since aggressively sharing resources leads to large custom p. Biswas, S. Banerjee, N. Dutt, L. Pozzi, and P. lenn§EGEN:
instruction data-path latencies. Moreover, it has beemwsho an lterative Improvement-Based ISE Generation TechniqueFast

that there is a design space of trade-offs between areagsavin ~ Susiomization of ProcessorsEEE Trans. VLS| Systvol. 14, no. 7,

and instruction latency that designers can explore. Arraigte [g] “CoreMark,” 2010, http://www.coremark.org/home.php
tion with the exploration at the instruction selection lekias ~ [9] S. Knzli, L. Thiele, and E. Zitzler, “Modular Design Spa&xploration

. . . Framework for Embedded System$EE Proceedings Computers &
been tackled in [16]. However, as [16] proposes an iterative Digital Techniquesvol. 152, no. 2. pp. 183-192, 2005.

search, a large number of explorations at the implememtati@o] c. Coello, G. B. Lamont, and D. VeldhuizeEyolutionary Algorithms
level need to be carried out. Thus, an exhaustive explaratio for Solving Multi-Objective Problems (Genetic and Evalntiry Com-
of the resource-sharing design-space does not permit Hlﬁ putation) Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

ACKNOWLEDGEMENTS

B. D., A. Bogliolo, and L. Benini, “Statistical Designp&ce Exploration

scalability of the selection process. for Application-Specific Unit Synthesis,” iBPAC'01. ACM Press, 2001,
pp. 641-646.
VI. CONCLUSIONS [12] z. Salcic, G. Coghill, and B. Maunder, “A Genetic Algthin High-

. . . Level Optimizer for Complex Datapath and Data-flow Digitgsg&ms,”
This paper has presented a novel, yet highly practical, applied Soft Computingvol. 7, no. 3, pp. 979 — 994, 2007.

predictive model that can be used to quickly find the optim&l3] G. Agosta, G. Palermo, and C. Silvano, “Multi-objeetiCo-Exploration

; : _ : of Source Code Transformations and Design Space Architctior
implementation trade-offs across a range of hardware egigth Low-Power Embedded Systems” BAC'04 New York. NY, USA:

tasks where parameterization exposes a large set of design acm, 2004, pp. 891-896.
points. This is a relatively common scenario in electronid4] P. Brisk, A. Kaplan, and M. Sarrafzadeh, *Area-Effidieinstruction

design automation, from high-level synthesis, throughidog ﬁg,ﬂg:{:eﬁif%rsigcggﬂ,\j’gfebslg Szﬁséimr;gné%@ilggs'mgmyo“'

synthesis and even at the physical implementation level. [15] N. Moreano, E. C. d. S. Borin, and G. Araujo, “Efficient Bpath Merg-
A concrete app“cation of the proposed technique has been ing for Partially Reconfigurable ArchitecturedEEE Trans. Comput.-

; P : Aided Design Integr. Circuits Systwol. 24, pp. 969 — 980, Jul. 2005.
presented in the context of processor customization. Is t l6] M. Zuluagf and Ng_ Topham, “}I/Exploring fhpe Unified Desigpace of

application, for every new input to the process, a largegiesi. ~ custom-instruction Selection and Resource SharingSAMOS X Jul.
space of solutions, each with different levels of resource 2010.

